Автор: admin

Техническое обслуживание уровнемера буйкового пневматического

В данной статье вы можете ознакомиться с: операциями, проводимыми при техническом обслуживании уровнемера буйкового пневматического; нормами времени на выполнение операций; стратегией технического обслуживания уровнемера буйкового пневматического.

Операции Разряд Время выполн. (час) Стратегия ТО
Проверка давления воздуха питания, регулировка 4 0,06 ТО3
Внешний осмотр: проверка отсутствия механических повреждений, удаление загрязнений. 4 0,06 ТО3
Чистка дросселя, сопла и заслонки. 4 0,08 ТО3
Проверка герметичности пневматических линий, устранение неплотностей. 4 0,13 ТО3
Проверка значений выходного сигнала соответствующего нулевому значению параметра, корректировка. 4 0,15 ТО3
Проверка правильности выдачи сигнала по диапазону, корректировка. 4 0,17 ТО5

Техническое обслуживание уровнемера поплавкового пневматического

В данной статье вы можете ознакомиться с: операциями, проводимыми при техническом обслуживании уровнемера поплавкового пневматического; нормами времени на выполнение операций; стратегией технического обслуживания уровнемера поплавкового пневматического.

Операции Разряд Время выполн. (час) Стратегия ТО
Проверка давления воздуха питания, регулировка 5 0,07 ТО3
Внешний осмотр: проверка отсутствия механических повреждений, удаление загрязнений. 5 0,06 ТО3
Проверка работы механического привода и наличие сцепления магнитов. 5 0,09 ТО3
Прочистка дросселя, сопла и заслонки. 5 0,10 ТО3
Смазка шестерен и осей механического привода. 5 0,10 ТО3
Проверка герметичности соединений пневматических линий, устранение неплотностей. 5 0,12 ТО3
Проверка значений выходного сигнала соответствующего нулевому значению параметра, корректировка. 5 0,17 ТО3
Проверка правильности показаний. 5 0,17 ТО5

Техническое обслуживание уровнемера буйкового электронного

В данной статье вы можете ознакомиться с: операциями, проводимыми при техническом обслуживании уровнемера буйкового электронного; нормами времени на выполнение операций; стратегией технического обслуживания уровнемера буйкового электронного.

Операции Разряд Время выполн. (час) Стратегия ТО
Внешний осмотр в соответствии с требованиями к взрывозащищённому оборудованию. 5 0,15 ТО3
Проверка надёжности электрических подсоединений. 5 0,07 ТО3
Проверка значения выходного сигнала соответствующего нулевому значению параметра, корректировка. 5 0,16 ТО3
Проверка правильности выдачи сигналов по диапазону, корректировка. 5 0,20 ТО5

Техническое обслуживание уровнемера радарного, ультразвукового, радиоизотопного

В данной статье вы можете ознакомиться с: операциями, проводимыми при техническом обслуживании уровнемера радарного, ультразвукового, радиоизотопного; нормами времени на выполнение операций; стратегией технического обслуживания уровнемера радарного, ультразвукового, радиоизотопного.

Операции Разряд Время выполн. (час) Стратегия ТО
Внешний осмотр в соответствии с требованиями к взрывозащищённому оборудованию, удаление загрязнений. 6 0,11 ТО3
Чистка контактов, проверка срабатывания сигнализатора. 6 0,22 ТО3
Проверка надёжности электрических подсоединений. 6 0,10 ТО5

pH-метр

Назначение

рН-метры в основном являются приборами, предназначенными для определения величины рН и окислительно — восстановительных потенциалов водных растворов, а также для использования в качестве высокоомного милливольтметра.

Прибором можно производить измерения как методом отбора проб с помощью входящих в комплект датчиков, так и непосредственно в лабораторных установках.

Приборы рассчитаны для использования в научно-исследовательских учреждениях, промышленных предприятиях и различных отраслях народного хозяйства.

На производстве в основном используются рН-метры типа рН-210, рН-215 и др., а также иономеры, предназначенные для определения активности одно- и двухвалентных анионов и катионов (величины рХ) в водных растворах, типа И-120, И-130,  И-135 и др.

Принцип измерения величины рН

Для измерения величины рН используется потенциометрический метод анализа, который основан на использовании зависимости электрического сигнала (потенциала) специального датчика, называемого измерительным электродом, от состава анализируемого раствора. Измерительный электрод реагирует на ионы водорода, а его потенциал зависит от содержания этих ионов в растворе и подчиняется уравнению Нернста:

Е =  Е0 + R×T/F×ln aн  = Е0 — 2,3×R×T/F×рН,

где R — универсальная газовая постоянная, равная 8,315 × 107 эрг/C×моль;

Т — температура раствора, К;

F — 96000 кулон/г экв (число Фарадея );

ан — активность ионов водорода в растворе;

рН — величина рН раствора;

Е0 — потенциал стеклянного электрода по отношению к стандартному водородному электроду при ан=1.

Абсолютную величину потенциала в настоящее время измерить невозможно, однако можно измерить потенциал относительно другого электрода, потенциал которого не зависит от состава раствора и условно равен нулю. Такой электрод называется электродом сравнения или вспомогательным электродом.

Таким образом, измерения всегда проводятся при помощи двух электродов: измерительного и электрода сравнения. Кроме того, в настоящее время существуют комбинированные электроды, которые в одном корпусе содержат оба электрода и измерительный, и сравнительный.

Зависимость электродной функции от температуры раствораКроме того следует знать, что электродная функция зависит от температуры раствора. Эта зависимость показана на графике.

С увеличением температуры увеличивается наклон (крутизна) электродной характеристики.

Концентрация анализируемых ионов, при которой потенциал электрода не зависит от температуры, называется изопотенциальной точкой.

Значения концентрации раствора  и потенциала электрода в этой точке называют координатами изопотенциальной точки.

Для стеклянных электродов координаты изопотенциальной точки нормируются, т.е. указываются изготовителем, а для прочих электродов обычно нет. Современные измерительные приборы позволяют автоматически учитывать температурные изменения электродной характеристики (термокомпенсация), для этого в прибор должны быть введены координаты изопотенциальной точки и текущая температура. Последняя может вводиться либо вручную, либо посредством термодатчика, подключенного к прибору.

При выборе электродов, рекомендуется выбирать такой электрод, изопотенциальная точка которого, лежит вблизи средней концентрации анализируемых растворов.

Рассмотрим измерительную систему со стеклянными измерительным и вспомогательным электродами, схема которой приведена на рисунок 1.

Схема измерения величины рН раствора

Рисунок 1. Схема измерения величины рН раствора.

1 — полый шарик из электродного стекла; 2 — стеклянный электрод; 3 — внутренний контактный электрод; 4 — вспомогательный электрод; 5 — электролитический ключ; 6 — пористая перегородка; 7 — милливольтметр.

При погружении электрода в раствор между поверхностью шарика 1 стеклянного электрода и раствором происходит обмен ионами, в результате которого ионы лития  в поверхностных слоях стекла замещаются ионами водорода, и стеклянный электрод приобретает свойства водородного электрода.

Между поверхностью стекла и контролируемым раствором возникает разность потенциалов Ех, величина которой определяется активностью ионов водорода в растворе и его температурой.

Для создания электрической цепи при измерении применяются контактные электроды: внутренний контактный электрод 3, осуществляющий электрический контакт с раствором, заполняющим внутреннюю часть  стеклянного электрода, и внешний  контактный электрод (вспомогательный электрод) 4, осуществляющий электрический контакт с контролируемым раствором.

Для защиты от воздействия высоких температур (при измерении рН растворов, температура которых выше температуры окружающего воздуха) вспомогательный электрод помещают вне контролируемого раствора и связь с ним осуществляется с помощью электролитического ключа 5 – трубки, наполненной раствором хлористого калия и заканчивающейся пробкой со стеклянным волокном 6.

Раствор хлористого калия непрерывно просачивается через стеклянное волокно пробки, предотвращая проникновение из контролируемого раствора в систему электрода 4 посторонних ионов, которые могли бы изменить величину потенциала электрода.

Электродвижущая сила электродной системы равна алгебраической сумме потенциалов контактов электродов Ек и Евсп потенциала, возникающего на внутренней поверхности стеклянного электрода и определяемого величиной рН внутреннего раствора Евн и потенциала, возникающего на наружной поверхности стеклянного электрода Ек.

Величины Ек, Евсп, и Евн не зависят от состава контролируемого раствора и меняются только при изменении температуры

Е = Ек + Евсп + Евн + Ех = Е0 — 2,3×R×T/F×рН.

Суммарная электродвижущая сила электродной системы зависит от величины рН раствора.

Измеряя ЭДС электродной системы с помощью милливольтметра, шкала которого градуирована в единицах рН, определяют величину рН контролируемого раствора.

Принцип действия прибора

Электродная система, являющаяся датчиком, имеет большое внутреннее сопротивление, достигающее 500-1000 МОм.

Для измерения ЭДС электродной системы применяется компенсационная схема, позволяющая существенно уменьшить  ток, потребляемый от датчика при измерении.

Элементарная схема, поясняющая принцип действия рН-метра, приведена на рисунке 2.

Схема pH-метра

Рисунок 2. Элементарная схема прибора.

ЭДС электродной системы Ех сравнивается с падением напряжения на сопротивлении R, через  которое протекает ток Iвых оконечного каскада усилителя. Падение напряжения Uвых на сопротивлении R противоположно по знаку электродвижущей силе Ех, и на вход усилителя подается напряжение: Uвх=Ех-Uвых=Ех-R×Iвых.

Напряжение Uвх преобразуется вибропреобразователем в переменное напряжение, которое затем многократно усиливается и при помощи фазочувствительного детектора вновь преобразуется в постоянное напряжение. Это напряжение управляется током Iвых оконечного каскада усилителя. При достаточно большом коэффициенте усиления усилителя напряжение Uвых мало отличается от ЭДС Ех и благодаря этому ток, протекающий через электроды в процессе измерения ЭДС, весьма мал.

Ток Iвых, протекающий через сопротивление R, пропорционален ЭДС электродной системы и величине рН контролируемого раствора.

Электродная система

Основной характеристикой электродной системы является зависимость ее ЭДС от величины рН и температуры раствора. В общем случае ЭДС может быть выражена уравнением:

Е=Еи-[S20+а(t-20)] (рН-рНи),

где Е — ЭДС в милливольтах;

t — температура электродов;

рН —  величина рН раствора;

рНи — величина рН раствора, соответствующая изопотенциальной точке;

S20 —  крутизна характеристики в изопотенциальной точке;

а — температурный коэффициент крутизны.

Зависимость ЭДС  электродной системы рН и температуры может быть представлена следующим приближенным уравнением:

Е=-33-(54,196+0,1884t) (рН-3,28)

Хроматографический метод анализа

Выделение индивидуальных химических соединений из смесей различного происхождения всегда было и остаётся одной из основных задач химии. Прежде чем начать подробное исследование какого-либо вещества, необходимо, как правило, выделить его в возможно более чистом виде и в достаточном количестве. В природных условиях вещества находятся главным образом в смесях, а продукты синтеза и других химических реакций обычно также не получаются сразу в чистом виде. Исходные  смеси веществ могут быть чрезвычайно сложным по составу. Поэтому разделение смесей на отдельные компоненты является для химика одной из наиболее частых работ.

Таким образом, методы разделения имеют важное значение, как в промышленности, так и в лабораторных работах препаративного и аналитического характера.

Одним из методов разделения сложных смесей органических и неорганических веществ на отдельные компоненты является хроматографический метод.

Метод разработан в 1903 году Михаилом Цветом, который показал, что при пропускании смеси растительных пигментов через слой бесцветного сорбента индивидуальные вещества располагаются в виде отдельных окрашенных зон. Полученный таким образом послойно окрашенный столбик сорбента Цвет назвал хроматограммой, а метод – хроматографией.

Хроматография.

Хроматография — это физико-химический метод разделения и анализа смесей, основанный на распределении их компонентов между двумя фазами – неподвижной и подвижной (элюент), протекающий через неподвижную.

Ряд видов хроматографий осуществляется с помощью приборов называемых хроматографами. Хроматографы используют для анализа и для препаративного разделения смесей веществ.

Хроматографы.

Хроматографы – это приборы или установки для хроматографического разделения и анализа смесей веществ. Основными частями  хроматографа являются: система для ввода исследуемой смеси веществ (пробы); хроматографическая колонка; детектирующее устройство (детектор); системы регистрации   и термостатирования; для препаративных (в т. ч. производственных) хроматографов, кроме того, отборные приспособления и приёмники для разделённых компонентов.

В соответствии с агрегатным состоянием используемой подвижной фазы существуют газовые и жидкостные хроматографы.

Для анализа и разделения веществ переходящих без разложения веществ, переходящих без разложения в парообразное состояние, получила газовая хроматография, где в качестве элюента (газа-носителя) используется гелий, азот, аргон, и др. газы.

В жидкостной колоночной хроматографии в качестве элюента применяют легколетучие растворители (напр., углеводороды, эфиры, спирты).

Газовый хроматограф.

Принципиальная схема газового хроматографа приведена на рисунке 1.

В газовом хроматографе газ — носитель из баллона через регуляторы расхода и давления непрерывно с постоянной или переменной скоростью подаётся в хроматографическую колонку – трубку, заполненную сорбентом и помещённую в термостат позволяющий поддерживать заданную температуру

Принципиальная схема газового хроматографа

Рисунок 1. Схема газового хроматографа.

1 — баллон с инертным газом; 2 — устройство для ввода пробы в хроматограф; 3 — хроматографическая колонка; 4 — термостат; 5 — детектор; 6 — преобразователь сигналов; 7 — регистратор.

Ввод газообразной пробы (1 – 50 куб. см) и жидкой (неск. мкл.) осуществляется либо вручную (газовым шприцем или микрошприцем), либо автоматически – при помощи микродозаторов. В хроматографической колонке происходит разделение многокомпонетной смеси на ряд бинарных смесей, состоящих из газа – носителя и одного из анализируемых компонентов. Бинарные смеси в определённой последовательности, зависящей от сорбируемости компонентов, поступают в детектор. В результате происходящих в детекторе процессов (изменение теплопроводности, ионизационного тока и др.) фиксируется изменение концетрации выходящих компонентов; преобразованные в электрический сигнал, эти процессы записываются в виде выходной кривой.

Хроматографические колонки.

Хроматографическая колонка – “сердце” хроматографа, в ней и происходит собственно разделение смеси. Колонки подразделяются на упаковочные (набивные) и капилярные. Изготавливают их из стеклянных, стальных, полиэтиленовых, тефлоновых и иногда медных трубок.

Термостат.

Подвижность разделяемых компонентов в колонке в большей степени зависит от температуры, поэтому, чтобы элюирование длилось приемлемое время, в колонке необходимо поддерживать выбранную температуру. Область рабочих температур чрезвычайно обширна – от температуры жидкого азота и до 400 °С и более в соответствии с природой хроматографируемых соединений и конструкцией прибора.

Выбранная температура должна поддерживаться постоянной в очень узком интервале (± 0,1 °С). Современные термостаты вполне позволяют поддерживать температуру с такой степенью точности. Хроматографические термостаты снабжены воздушным нагревателем и вентилятором. Преимущество таких термостатов – их чувствительность при работе при высоких температурах.

Детекторы.

Хроматографический детектор – это прибор, преобразующий результаты разделения в форму, удобную для регистрации самописцем.

Поскольку принцип действия хроматографических детекторов может быть самым разным, детекторы трудно сравнивать. Однако существуют несколько общих критериев. Это селективность, чувствительность, реакция, шум, нижний предел детектирования (наименьшее детектирующее количество) и линейность отклика. Последняя характеристика зависит от принципа работы детектора. Для количественной работы почти каждый детектор требует калибровки, необходимой для определения поправочных коэффициентов.

Схема катарометра

Рисунок 2. Схема катарометра.

1 — ввод газа из колонки; 2 — выход в атмосферу; 3 — нить сопротивления; 4 — изолятор; 5 — металлический блок.

ДТП – детектор по теплопроводности (катарометр, рисунок 2) – принцип  действия основан на сравнении теплопроводности чистого газа — носителя и бинарной смеси состоящей из газа-носителя и одного из компонентов анализируемой смеси, различие теплопроводности приводит к разбалансу моста, что служит сигналом детектора. Чувствительные элементы детектора включены по мостовой схеме (R1,R2,C1,C2), показанной на рисунке 3.

Схема моста

Рисунок 3. Схема моста.

С1, С2 — измерительные ячейки; R1, R2 — сравнительные ячейки; 1 — вход газа из колонки; 2 — ввод чистого газа — носителя; 3 — установка нуля; 4 — миллиамперметр; 5 — регулятор тока, проходящего через нити; 6 — источник тока; 7 — вывод на самописец.

ДИП – детектор ионизации в пламени (рисунок 4) – принцип действия основан на изменении электропроводности водородо — воздушного пламени.

Схема ионизационного детектора

Рисунок 4. Схема ионизационного детектора.

1 — источник ионизации; 2 — область между электродами; 3 — электрометр; 4 — самописец; 5 — источник напряжения ионизации; 6 — источник компенсационного потенциала; Ео — измеряемое напряжение; R1 — электрическое сопротивление среды; R2 — измеряемое сопротивление.

Существуют и другие детекторы (ДЭЗ, ТИД, ДИР, ДПР, ПФД и др.), но ДТП и ДИП наиболее чаще используемые (ОАО “КАУСТИК”) в газовой хроматографии.

Для жидкостной хроматографии используют детекторы: кондуктометрический, фотометрический (спектрофотометрический), рефрактометрический и др. Подачу подвижной фазы – растворителя осуществляют при помощи беспульсационных систем (давление до 50 МПа), а ввод пробы – микрошприцем или переключающимся краном

Схема пламенно-ионизационного детектора

Рисунок 5. Схема Пламенно — ионизационного детектора.

1 — ввод водорода; 2 — ввод газа из колонки; 3 — ввод воздуха; 4 — вывод в атмосферу; 5 — катод; 6 — собирающий электрод.

Регистраторы.

Компонент смеси, поступаюший из колонки, с помощью детектора трансформируется в изменение некоторого электрического параметра, как правило, напряжения. Изменение этого параметра во времени регистрируется, и полученную хроматограмму можно обрабатывать как качественно, так и количественно. Регистрируют хроматограммы самопишущие потенциометры, которые дают длительную запись отклика детектора как функции времени.

В хроматографии можно применять лишь те самописцы, которые отвечают определённым требованиям: это высокая скорость регистрации; воспроизводимое отклонение пера при подаче одного и того же напряжения; линейная зависимость по всей шкале; высокая чувствительность, т.е. отклонение пера при очень маленьком изменении потенциала.

Основной недостаток самописцев – ограниченная линейная область. Именно по этой причине такое большое внимание уделялось разработке методов регистрации сигналов детекторов без применения переключения диапазонов. К приборам такого типа относятся, в частности, цифровые интеграторы.

Техническое обслуживание уровнемера поплавкового электронного

В данной статье вы можете ознакомиться с: операциями, проводимыми при техническом обслуживании уровнемера поплавкового электронного; нормами времени на выполнение операций; стратегией технического обслуживания  уровнемера поплавкового электронного.

Операции Разряд Время выполн. (час) Стратегия ТО
Внешний осмотр в соответствии с требованиями к взрывозащищённому оборудованию и пожаробезопасности. 5 0,10 ТО3
Проверка работы механического привода и наличия сцепления магнитов. 5 0,09 ТО3
Смазка шестерён и осей механического привода. 5 0,12 ТО3
Проверка значения выходного сигнала соответствующего нулевому значению параметра, корректировка. 5 0,20 ТО3
Проверка надёжности электрических подсоединений. 5 0,09 ТО4
Проверка правильности показаний. 5 0,20 ТО4