Автор: admin

Вторичные пневматические приборы

Вторичные пневматические приборы предназначены для контроля и записи различных технологических параметров, величины которых преобразованы в стандартный диапазон измерения пневматического сигнала.

Питание приборов осуществляется сжатым очищенным и осушенным воздухом давлением 1,4 ± 0,14 кгс/см2.

Самопишущие пневматические приборы снабжены электрическим (последняя буква в обозначении модификации прибора — Э) или пневматическим (то же, буква П) приводом диаграммной ленты.

Основные характеристики вторичных пневматических приборов.

Тип прибора Дополнительные устройства Количество контролируемых параметров Осн. погр, % Способ контроля
Показ. Самоп.
Станция управл. Блок сигнал. Задатчик 1 2 3 4, 6, 8, 16
ПВ3.2 + + + 1 +
ПВ2.2 + + 1 +
ПВ4.4Э + 1 +
ПВ10.1Э + + + 1 +
ПВ10.2Э + + + 1 +
ПВ4.2Э + 1 +
ПВ4.3Э + 1 +
ППВ1.1 + 1 +
ПКР-1 + 0,5 + +
1
ПКР-2 + 0,5 + +
1
ПК1.3 + 0,5 + +
1
ПВ1.3 + 0,5 + +
РПВ4.2Э + 1 +
РПВ4.3Э + 1 +

В приборах типа ПВ (рис.1) измеряемое давление Рвх от первичного преобразователя поступает на приемный элемент — сильфон 5. Сжатый воздух от источника питания через постоянный дроссель 3 поступает в линию, соединяющую сопло 7 с силовым элементом 11. При измерении Рвх сильфон перемещает рычаг 4, что вызывает изменение зазора между соплом 7 и заслонкой 8, находящейся на конце рычага 4. Это приводит к изменению давления в линии сопла, а следовательно, в силовом элементе 11. При этом перемещаются сферическая упругая мембрана силового элемента и упирающийся в нее рычаг 10. Последний посредством лавсановой нити 2 и пружины обратной связи с рычагом 4. Пружина 9 растягивается и создает усилие, действующее обратно усилию, образованному на силовом элементе 11.

Вторичный пневматический прибор ПВ

Рисунок 1

Таким образом, усилие, созданное Рвх на приемном сильфоне 5, уравновешивается усилием в линии обратной связи. Перемещение рычага 10 силового элемента передается указателю1 и перу. Начальное положение стрелки при Рвх = (0,2 кгс, см2) устанавливается вращение винта 12 корректора нуля под шкалой (изменением положения направляющего ролика). Корректировка диапазона измерения прибора при Рвх= (1 кгс,см2) осуществляется изменением числа рабочих витков пружины обратной связи (осторожным вращением фиксатора — скобы). Грубая настройка нуля осуществляется винтом на приемном сильфоне.

Приборы типов ПВ3.2, ПВ10, применяемые в схемах автоматического регулирования, помимо измерительных устройств имеют станцию управления, состоящую из ручного задатчика ЗД и переключателя П (рис. 2). Узел задатчика VI предназначен для установки задания (контрольной точки) при автоматическом регулировании и изменения положения клапана исполнительного механизма при ручном управлении.

Переключатель П состоит из пяти кнопок и предназначен для плавного перевода систем автоматизации технологических процессов в различные режимы, ручного управления с помощью задатчика прибора, непосредственно подключенного к исполнительному механизму, автоматического регулирования, при котором исполнительным механизмом управляет регулятор, автоматического программного регулирования, при котором задание регулятору поступает от специального прибора программного задатчика.

Кнопками «Р» , «А», «АП», выбирают соответственно ручной, автоматический и автоматический программный режимы управления, кнопками «Откл.» И «Вкл.» Управляют включением регулятора (работает в режимах «А» и «АП», в остальных режимах должен быть отключен).

Вторичный пневматический прибор ПВ3.2, ПВ10

Рисунок 2

При ведении технологического процесса переход из одного режима управления в другой осуществляется переключением кнопок станции в следующей последовательности:

  • ручное управление — нажимают кнопки «Р» и «Откл», при этом отключаются клапаны I и II, сигнал от задатчика VI через усилитель VII и клапан I переходит к штуцерам 7 пневматического разъема и прибора, к штуцеру 1 на регулятор и шкалу клапана исполнительного механизма, регулируемая переменная подводится к штуцеру 2-1 прибора и к штуцеру 2 на регулятор;
  • промежуточное положение при переходе с ручного управления на автоматическое регулирование — нажимают кнопку «А», клапан I закрывается и отключает задатчик от исполнительного механизма, через клапан II давления от задатчика через штуцер разъема 5 поступает на шкалу задания прибора и в регулятор, при отключенном регуляторе (кнопка «Откл» нажата) устанавливают задание равным переменной;
  • автоматическое регулирование — нажимают кнопку «Вкл» при этом выключающее реле регулятора (штуцер 3) через клапан IV соединяется с атмосферой, выход регулятора (штуцер 1) с исполнительным механизмом (штуцер 7) и его шкалой на приборе, задание от ручного задатчика поступает на регулятор и шкалу задания прибора;
  • промежуточное положение при переходе с автоматического на автоматическое программное регулирование — нажимают кнопку «Откл» (кнопка «А» включена), в выключающее реле (штуцер 3) поступает питание из клапана V на шкалу «Задание» и в регулятор идет сигнал от задатчика VI. Затем нажимают кнопку «АП» и, когда давление программного задатчика VI в момент его отключения, включают регулятор кнопкой «Вкл»;
  • автоматическое программное регулирование — нажимают кнопки «АП» и «Вкл», сигнал от программного задатчика через клапан III поступает в регулятор и на шкалу прибора, ручной задатчик отключается от регулятора и шкалы прибора (клапан II закрыт), регулятор управляет исполнительным механизмом по программе;
  • промежуточное положение при переходе с автоматического программного на автоматическое регулирование — нажимают кнопку «Откл», затем кнопку «А» и ручным задатчиком устанавливают давление, равное давлению на программном задатчике в момент его отключения, затем нажимают кнопку «Вкл»;
  • промежуточное положение при переходе с автоматического в ручной режим управления — нажимают кнопку «Откл», кнопку «А» выключают, по шкале «Задание» ручным задатчиком устанавливают давление, равное давлению на шкале клапана исполнительного механизма, после чего нажимают кнопку «Р» и переходят на ручное управление.

Приборы ПВ2.2 (рис.3) снабжены блоком сигнализации выхода параметра из рабочего диапазона. Предельные значения рабочего диапазона устанавливают с помощью двух сигнальных указателей, расположенных на шкале прибора. Измерительная схема прибора ПВ2.2. Когда указатель переменной находится внутри рабочего диапазона между стрелками 4 и 5 сопел 1 и 2, С21 и С211 закрыты, сигнал на выход не поступает (Р вых = 0). При повышении параметром значение верхней границы рабочего диапазона зазор между соплом и заслонкой увеличивается, камера А11 сообщается с атмосферой, через открытое сопло С211 на выход реле проходит сигнал 1, приводящий в действие какоелибо сигнальное устройство (Рсиг(1-1)=1). Как только параметр достигнет значение нижней границы рабочего диапазона, сопла С11 и С2 закроются, камера А1 сообщится с атмосферой и через открытое сопло С21 на выходе снова появится сигнал 1 (Рсиг(1-2)=1)..

Вторичный пневматический прибор ПВ2.2

Рисунок 3

Принципиальная схема прибора типа РПВ с одним механизмом приведена на рис. 4. Входной сигнал в виде сжатого воздуха поступает в сильфон 3. Усилие, развиваемое сильфоном 3, передается на рычаг 1, который, поворачиваясь вокруг упругой опоры 2, перекрывает шариковое сопло 6 пропорционально величине входного сигнала. Изменение входного сигнала вызывает изменение зазора между соплом 6 и рычагом 1, что приводит к изменению давления в линии сопла, а следовательно, и в полости цилиндра 4 пневматического сервомеханизма. Изменение давления в цилиндре 4 вызывает перемещение поршня 10, уплотненного манжетной мембраной 9. Поступательное движение поршня10 с помощью ленточной передачи преобразуется во вращательное движение выходного вала 8, на котором жестко закреплен шкив 11, приводящий в движение посредством тросика каретку с пером и стрелкой. Поршень 10 сервомеханизма будет перемещаться, поворачивая выходной вал 8, тем самым

Вторичный пневматический прибор РПВ

Рисунок 4

меняя натяжение пружины обратной связи 5 до тех пор, пока создаваемый натяжением пружины момент не уравновесит момент, созданный сильфоном 3. Новому состоянию равновесия соответствует новое положение стрелки прибора.

В приборах модификации «КП» и «КЭ» при изменении входного сигнала, поступающего в измерительный механизм, выходной вал 8 поворачивается на угол пропорциональный корню квадратному из величины этого изменения.

Извлечение корня квадратного осуществляется профильным кулачком 7, выполненным по параболическому закону и воздействующим на пружину обратной связи 5.

Работа во взрывоопасных зонах

Работа на взрывоопасных производствах наряду с обычными мерами безопасности требует знания ряда дополнительных требований. Прежде всего, необходимо знать, с какими взрывоопасными смесями газов, легковоспламеняющихся жидкостей и горючих пыли и волокон связано производство (категория и группа смеси).

Заметим, что к взрывоопасным относятся смеси с воздухом горючих газов, паров легковоспламеняющихся жидкостей (ЛВЖ), горючих пыли и волокон с нижним концентрационным пределом воспламенения не более 65 г/м3 при переходе их во взвешенное состояние, которые при определенной концентрации способны взорваться при возникновении источника инициирования взрыва.

Важным является знание классификации взрывоопасных зон, на основании которой производится выбор электрооборудования и соблюдаются безопасные методы труда.

Правилами устройства электроустановок предусмотрена следующая классификация взрывоопасных зон:

В-I — зоны, расположенные в помещениях, в которых выделяются горючие газы и пары ЛВЖ в таком количестве и с такими свойствами, что они могут образовывать с воздухом взрывоопасные смеси при нормальных режимах работы, например при загрузке технологических аппаратов;

В-Ia — зоны, в которых взрывоопасные смеси могут образовываться в результате неисправностей или аварий;

В-I6 — то же, что В-Iа, но отличаются одной из двух особенностей:

горючие газы обладают высоким нижним концентрационным пределом воспламенения (более 15%) и резким запахом;

помещения, в которых возможно образование газообразного водорода, имеют взрывоопасную зону только в верхней части;

B-Iд — пространства у наружных взрывоопасных установок, эстакад, открытых нефтеловушек и т.д., взрывоопасная зона класса В-Iг устанавливается в пределах от 0,5 до, 20 м в зависимости от наличия вентиляции, ограждающих конструкций, обвалования и т д.;

В-II и В-IIа — зоны, расположенные в помещениях, в которых переходящие во взвешенное состояние горючие пыли и волокна выделяются в таком количестве и с такими свойствами, что они способны образовывать с воздухом взрывоопасные смеси соответственно при нормальных режимах работы (В-II) или только в результате аварий и неисправностей (В-IIа).

В зависимости от категорий смесей и классов взрывоопасных зон выбирается соответствующее электрооборудование. Правильность его использования должна контролироваться при пусконаладочных и эксплуатационных работах.

По ГОСТ 12 2.020-76 взрывозащищённое электрооборудование подразделяется по уровням и видам взpывозащиты, группам и температурным классам.

Уровни взpывозащиты: электрооборудование повышенной надежности против взрыва (знак 2), взрывобезопасное (знак 1), особовзрывобезопасное (знак 0).

Виды взpывозащиты характеризуются техническими средствами, обеспечивающими безопасность, например взрывонепроницаемая оболочка (d), заполнение или продувка защитным газом (p), искробезопасная электрическая цепь (i) и т. д.

Группы взрывозащищенного оборудования определяют область их применения, группа I — рудничное, группа II — для внутренней и наружной установок.

Электрооборудование группы II, имеющее взрывонепроницаемую оболочку или искробезопасную электрическую цепь, подразделяется на подгруппы IIА, IIВ и IIС в зависимости от параметров взpывозащиты, применяемых для соответствующих категорий взрывоопасных смесей. Наиболее опасной является смесь категории IIС, для которой, например, безопасный экспериментальный максимальный зазор (БЭМЗ) составляет менее 0,5 мм; к этой категории относятся смеси с водородом, ацетиленом, сероуглеродом и т. п.

Температурные классы электрооборудования группы II определяют предельную температуру, при которой оборудование является взрывозащищенным для определенной группы взрывоопасной смеси. Например, для электрооборудования класса Т1 допустима предельная температура поверхности 450°С, а для класса Т6 — 85°С. Маркировка взрывозащищенного оборудования расшифровывается следующим образом; сначала идет знак уровня взpывозащиты (2, 1,0), далее — знак Ех, указывающий, что оборудование соответствует стандартам на виды взpывозащиты, затем — знак вида взpывозащиты; d — взрывонепроницаемая оболочка; ia, ib, ic — искробезопасная электрическая цепь; е — защита вида «е»; р — заполнение или продувка оболочки под избыточным давлением; s — специальный вид взpывозащиты и т.д.; затем — I группа взрывозащищенного оборудования (I, IIА, IIВ, IIC) и, наконец, знак температурного класса.

В процессе наладки или эксплуатации взрывозащитных соединений (корпус — крышка, корпус — фланец и др.) вводные устройства должны быть осмотрены (недопустимы царапины, вмятины), тщательно протерты и покрыты тонким слоем консистентной смазки.

После затяжки болтов до отказа должны быть проверены взрывонепроницаемые зазоры с помощью щупа.

Датчики имеющие вид взpывозащиты — искробезопасная электрическая цепь, обеспечивается установкой специальных устройств барьеров искрозащиты.

При подключении кабелей и проводов с искробезопасными цепями необходимо проверить емкость и индуктивность этих линий (включая датчик) и сравнить их с указанными в инструкции по монтажу или на табличке прибора. Если к прибору подключаются разные цепи: искробезопасные и не искробезопасные, то зазор между ними должен быть не менее 50 мм.

При работе во взрывоопасных и загазованных зонах необходимо:

  • работать бригадой не менее двух человек, а при проведении работ в колодцах, резервуарах, агрегатах — не менее трех человек с оформлением наряда;
  • применять только специальный, как правило, омедненный инструмент;
  • быть в обуви без стальных подковок и гвоздей;
  • производить монтаж и демонтаж приборов на технологическом оборудовании только после его опорожнения и дегазации;
  • при работе  пользоваться средствами индивидуальной защиты;
  • пользоваться переносными приборами искробезопасного исполнения.

При работе во взрывоопасных и загазованных зонах запрещается:

  • ремонтировать электрооборудование и сети, находящиеся под напряжением;
  • эксплуатировать электрооборудование при неисправном защитном заземлении, неисправной блокировке крышек аппаратов, неисправной блокировке пуска машин с видом взрывозащиты “продуваемое под избыточным давлением”, нарушении взрывозащищенности оболочек;
  • вскрывать оболочку взрывозащищенного электрооборудования, если его токоведущие части находятся под напряжением;
  • включать автоматически отключившуюся электроустановку без выяснения и устранения причин ее отключения;
  • перегружать сверх номинальных параметров взрывозащищенное электрооборудование, провода и кабели;
  • подключать к источникам питания искробезопасных приборов другие аппараты и цепи, которые не входят в комплект данного прибора;
  • оставлять настежь открытые двери помещений и тамбуров, отделяющих взрывоопасные помещения от других взрывоопасных и невзрывоопасных помещений;
  • включать электроустановки без наличия аппаратов, отключающих защищаемую электрическую цепь при ненормальных режимах;
  • заменять защиту (тепловые элементы, предохранители, расцепители) электрооборудования другими видами защиты или защитой с другими номинальными параметрами, на которые данное электрооборудование рассчитано;
  • работа электрооборудования с видом взрывозащиты “продуваемое под избыточным давлением” с давлением ниже величин, указанных в точках контроля давления согласно инструкции по монтажу и эксплуатации;
  • закрашивать паспортные таблички (знаки взрывозащиты, предупредительные надписи должны периодически восстанавливаться, как правило, красной краской).

 

Измерение температуры

Одним из важнейших физических параметров, который чаще всего наблюдается и контролируется, будь то повседневная бытовая жизнь человека, производственные циклы или лабораторные исследования, является температура.

Температурой — называют величину, характеризующую тепловое состояние тела. Согласно кинетической теории температуру определяют как меру кинетической энергии поступательного движения молекул. Отсюда температурой называют условную статистическую величину, прямо пропорциональную средней кинетической энергии молекул тела.

В соответствии с Международной практической температурной шкалой 1968 г. основной температурой является термодинамическая температура, единица которой — Кельвин (К), но на практике чаще применяется температура Цельсия, единица которой — градус (С), равный Кельвину. между температурой Цельсия и термодинамической температурой существует следующее соотношение:

t, С=Т, К-273,15

Для изменения температур применяется контактные и бесконтактные методы. Для реализации контактных методов измерения применяются:

термометры расширения

  • стеклянные
  • жидкостные
  • манометрические
  • биметаллические
  • дилатометрические

термопреобразователи

  • термосопротивления (проводниковые и полупроводниковые)
  • термоэлектрические преобразователи

Бесконтактные измерения температуры осуществляются пирометрами (квазимонохроматическими, спектрального отношения и полного излучения).

Контактные методы измерения более просты и точны, чем бесконтактные. Но для измерения температуры необходим непосредственный контакт с измеряемой средой и телом. И в результате этого может возникать, с одной стороны, искажение температуры среды в месте измерения и с другой несоответствие температуры чувствительного элемента и измеряемой среды.

Серийно выпускаемые термометры и термопреобразователи охватывают диапазон температур от — 260 до 2200°С и кратковременно до 2500°С. Бесконтактные средства измерения температуры серийно выпускаются на диапазон температур от 20 до 4000°С.

В таблице 1 приведены наиболее распространенные устройства для измерения температуры и практические пределы их применения.

Таблица 1

Термометрическое свойство Наименование устройства Пределы длительного применения, 0С
Нижний Верхний
Тепловое расширение Жидкостные стеклянные термометры -190 600
Изменение давления Манометрические термометры -160 60
Изменение электрического сопротивления Электрические термометры сопротивления. -200 500
Полупроводниковые термометры сопротивления -90 180
Термоэлектрические эффекты Термоэлектрические термометры (термопары) стандартизованные. -50 1600
Термоэлектрические термометры (термопары) специальные 1300 2500
Тепловое излучение Оптические пирометры. 700 6000
Радиационные пирометры. 20 3000
Фотоэлектрические пирометры. 600 4000
Цветовые пирометры 1400 2800

Термометры стеклянные

Принцип действия основан на зависимости объемного расширения жидкости от температуры. Отличаются высокой точностью, простотой устройства и дешевизной. Однако стеклянные термометры хрупки, как правило, не ремонтопригодны, не могут передавать показания на расстояние.

Основными элементами конструкции являются резервуар с припаянным к нему капилляром, заполненные частично термометрической жидкостью, и шкала.

Конструктивно различаются палочные термометры со шкалой, вложенной внутрь стеклянной оболочки. У палочных термометров шкала наносится непосредственно на поверхность толстостенного капилляра. У термометров с вложенной шкалой капилляр и шкальная пластина с нанесенной шкалой, заключены в защитную оболочку, припаянную к резервуару.

Стеклянные термометры расширения выпускаются для измерения температур от -100 до 600°С.

Выпускаются также ртутные электроконтактные термометры, предназначенные для сигнализации или поддержания заданной температуры. Термометры выпускаются с заданным постоянным контактом (ТЗК) или с подвижным контактом (ТПК).

Точность показаний термометров зависит от правильности их установки. Важнейшим требованием, предъявляемым при установке, является обеспечение наиболее благоприятных условий притока тепла от измеряемой среды к термобаллону и наименьший отвод тепла от остальной части термометра во внешнюю среду. Большей частью термометры устанавливают в защитную оправу.

Стеклянные термометры

Рисунок 1. Стеклянные термометры

Электроконтактные термометры

Рисунок 2. Электроконтактные термометры

Манометрические термометры

Манометрические термометры предназначены для непрерывного дистанционного измерения температуры жидких и газообразных нейтральных сред в стационарных условиях.

Принцип действия основан на измерении давления (объема) рабочего вещества в замкнутом объеме в зависимости от температуры чувствительного элемента. Основными частями манометрических термометров являются термобаллон (чувствительный элемент), капилляр и деформационный манометрический преобразователь, связанный со стрелкой прибора.

Схема манометрического термометра

Рисунок 3. Схема манометрического термометра

В зависимости от агрегатного состояния вещества, заполняющего систему, манометрические термометры делятся на жидкостные, газовые и парожидкостные (конденсатные). В качестве заполнителей термосистем применяются: в газовых манометрических термометрах — азот, в жидкостных — полиметилоксановые жидкости, в парожидкостных -ацетон, метил хлористый, фреон.

Измерение температуры контролируемой среды воспринимается заполнителем через термобаллон и преобразуется в изменение давления, под действием которого манометрическая трубчатая пружина с помощью тяги и сектора перемещает стрелку относительно шкалы.

Схема манометрического термометра

В зависимости от выполняемых функций манометрические термометры разделяются на показывающие, самопишущие, комбинированные, бесконтактные, с наличием устройств для телеметрической передачи, сигнализации, регулирования или без них.

В зависимости от способа соединения термобаллона с корпусом, термометры могут быть местные и дистанционные. В зависимости от формы диаграммы и поля записи, самопишущие термометры подразделяют на дисковые, ленточные. В зависимости от типа механизма для передвижения диаграммных лент самопишущие термометры изготовляют с часовым или электрическим приводом.

Достоинством манометрических термометров являются: возможность измерения температуры без использования дополнительных источников энергии, сравнительная простота конструкции, возможность автоматической записи показаний, взрывобезопасность, нечувствительность к внешним магнитным полям.

К недостаткам относятся: относительно невысокая точность измерения, трудность ремонта при разгерметизации измерительной системы, низкая прочность капилляра, небольшое расстояние дистанционной передачи показаний, значительная инерционность.

Основные типы манометрических термометров:

— ТПГ — 100 Эк, ТПГ- 100Сг -газовый показывающий сигнализирующий;

— ТКП — 100 , ТКП — 160 -конденсационный показывающий;

— ТЖП — 100 — жидкостной показывающий;

— ТГП — 100 — газовый показывающий.

Термопреобразователи сопротивления

Термопреобразователи сопротивление применяются для измерения температур а пределах от -260 до 750°С. Принцип действия основан на свойстве проводника изменять свое электрическое сопротивление с изменением температуры. Основными частями термопреобразователя сопротивления являются: чувствительный элемент, защитная арматура и головка преобразователя с зажимами для подключения и соединительных проводов. Чувствительные элементы медных термопреобразователей представляют собой проволоку, покрытую эмалевой изоляцией, которая бифилярно намотана на каркас, либо без каркаса, помещенную в тонкостенную металлическую оболочку. Чувствительный элемент помещается в защитную арматуру.

Платиновая проволока не может быть покрыта слоем изоляции. Поэтому платиновые спирали располагают в тонких каналах керамического каркаса, заполненных керамическим порошком. Этот порошок выполняет функции изолятора, осуществляет фиксацию положения спиралей в каналах и препятствует межвитковому замыканию.

Термопреобразователи сопротивления выпускаются для измерений температур в диапазоне от -260 до 1100°С следующих исполнений: погружаемые и поверхностные, стационарные и переносные; негерметичные и герметичные; обыкновенные, пылезащищенные, водозащищенные, взрывобезопасные, защищенные от агрессивных сред и других внешних воздействий; малоинерционные, средней и большой инерционности; обыкновенные и виброустойчивые; одинарные и двойные; 1 — 3 классов точности.

Выпускаются термопреобразователи сопротивления следующих номинальных статических характеристик преобразования: платиновые -10П, 50П, 100П, медные -10М, 50М, 100М. Число в условном обозначении характеристики показывает сопротивление термопреобразователя при 0°С.

Термопреобразователи сопротивления

К числу достоинств следует отнести высокую точность и стабильность характеристики преобразователя, возможность измерять криогенные температуры, возможность осуществления автоматической записи и дистанционной передачи показаний.

 К недостаткам следует отнести больше размеры чувствительного элемента, не позволяющие измерять температуру в точке объекта или измеряемой среды, необходимость индивидуального источника питания, значительная инертность.

Термоэлектрические преобразователи

Термометры термоэлектрические представляют собой чувствительные элементы в виде двух проводов из разнородных металлов или полупроводников со спаянными концами. Действие термоэлектрического преобразователя основано на эффекте Зеебека — появлении термоЭДС в контуре, составленном из двух разнородных проводников, спаи которых нагреты до различных температур. При поддержании температуры одного из спаев постоянной можно по значению термоЭДС судить о температуре другого спая. Спай, температура которого должна быть постоянной, принято называть холодным, а спай, непосредственно соприкасающийся с измеряемой средой — горячим.

В наименовании термоэлектрического преобразователя всегда принято ставить на первое место название положительного термоэлектрода, а на второе — отрицательного.

Преобразователи термоэлектрические изготовляют следующих типов:

— ТВР — термопреобразователь вольфрамрениевый

— ТПР — термопреобразователь платинородиевый

— ТПП — термопреобразователь платинородий-платиновый

— ТХА — термопреобразователь хромель-алюмелевый

— ТХК — термопреобразователь хромель-копелевый

— ТМК — термопреобразователь медь-копелевый

Термопреобразователи различают:

— По способу контакта с измеряемой средой — погружаемые, поверхностные.

— По условиям эксплуатации — стационарные, переносные, разового применения, многократного применения, кратковременного применения.

— По защищенности воздействия окружающей среды — обыкновенные, водозащитные, защищенные от агрессивных сред, взрывозащищенные, защищенные от других механических воздействий.

— По герметичности к измеряемой среде — негерметичные, герметичные.

— По числу термопар — одинарные, двойные тройные.

— По числу зон — однозонные, многозонные.

Термоэлектрические преобразователи

Если температуру холодного спая поддерживать постоянной, то термоЭДС будет зависеть только от степени нагрева рабочего конца термопреобразователя , что позволяет отградуировать измерительный прибор в соответствующих единицах температуры . В случае отклонения температуры свободных концов от градуировочного значения, равного 0°С, к показаниям вторичного прибора вводиться соответствующая поправка. Температуру свободных концов учитывают для того, чтобы знать величину поправки.

Для вывода свободных концов термопреобразователя в зону с постоянной температурой служат удлиненные термоэлектродные провода. Они должны быть термоэлектрически идентичны термоэлектродам термопреобразователя.

Существует два способа подбора компенсационных проводов. Первый способ — подбирают провода, которые в паре с соответствующим электродом имеют термоЭДС. Его применяют в тех случаях, когда необходимо производить измерения с повышенной точностью. В случае недефицитных материалов и удовлетворительных эксплуатационных свойств провода изготовляют из тех же материалов, что и подключаемая термопара.

Таким образом, чтобы определить измеряемую температуру среды с помощью термоэлектрического преобразователя, необходимо выполнить следующие операции:

  •  измерить термоЭДС в цепи преобразователя;
  • определить температуру свободных концов;
  • в измеряемую величину термоЭДС ввести поправку на температуру свободных концов;
  • по известной зависимости термоЭДС от температуры определить измеряемую температуру среды.

В зависимости от материала термоэлектродов различают: термопреобразователи с металлическими термопарами из благородных и неблагородных металлов и сплавов; термопреобразователи с термопарами из тугоплавких металлов и сплавов.

Термопары из благородных металлов, обладая устойчивостью к высоким температурам и агрессивным средам, а также постоянной термоЭДС, широко пользуются для замера высоких температур в промышленных и лабораторных условиях. Термопары из неблагородных металлов и сплавов применяются доя измерения температур до 1000°С. Достоинством этих термопар является сравнительно небольшая стоимость и способность из развивать большие термоЭДС.

Для защиты термоэлектродов от механических повреждений и агрессивного действия среды, а также для удобства установки на технологическом оборудовании применяют защитную арматуру. Материал и исполнение арматуры могут быть различными в зависимости от назначения и области применения. Наиболее широко в качестве материалов используют высоколегированные стали и коррозионно — стойкие, жаропрочные и жаростойкие сплавы на основе железа, никеля, хрома и добавок алюминия, кремния, марганца.

Бесконтактное измерение температуры, основные понятия и законы излучения

О температуре нагретого тела можно судить на основании измерения параметров его теплового излучения, представляющего собой электромагнитные волны различной длины. Чем выше температура тела, тем больше энергии оно излучает.

Термометры, действие которых основано на измерении теплового излучения, называют пирометрами. Они позволяют контролировать температуру от 100 до 6000 °С и выше. Одним из главных достоинств данных устройств является отсутствие влияния измерителя на температурное поле нагретого тела, так как в процессе измерения они не вступают в непосредственный контакт друг с другом. Поэтому данные методы получили название бесконтактных.

На основании законов излучения разработаны пирометры следующих типов:

  1. пирометр суммарного излучения (ПСИ) – измеряется полная энергия излучения;
  2. пирометр частичного излучения (ПЧИ) – измеряется энергия в ограниченном фильтром (или приемником) участки спектра;
  3. пирометры спектрального отношения (ПСО) – измеряется отношение энергии фиксированных участков спектра.

В зависимости от типа пирометра различаются радиационная, яркостная, цветовая температуры.

Радиационной температурой реального тела Тр называют температуру, при которой полная мощность АЧТ равна полной энергии излучения данного тела при действительной температуре Тд.

Яркостной температурой реального тела Тя называют температуру, при которой плотность потока спектрального излучения АЧТ равна плотности потока спектрального излучения реального тела для той же длины волны (или узкого интервала спектра) при действительной температуре Тд.

Цветовой температурой реального тела Тц называют температуру, при которой отношения плотностей потоков излучения АЧТ для двух длин волн  и  равно отношению плотностей потоков излучений реального тела для тех же длин волн при действительной температуре Тд.

Измерение расхода жидкостей, газов и паров

Наиболее широко применяющиеся приборы для измерения расходов веществ, протекающие по трубопроводам, можно разделить на следующие группы:

1. Расходомеры переменного перепада давления.

2. Расходомеры постоянного перепада давления.

3. Электромагнитные расходомеры.

4. Счетчики.

5. Другие.

Расходомеры переменного перепада давления.

Расходомеры переменного перепада давления основаны на зависимости от расхода перепада давления, создаваемого устройством, которое установлено в трубопроводе, или же самим элементом последнего.

В состав расходомера входят: преобразователь расхода, создающий перепад давления; дифференциальный манометр, измеряющий этот перепад и соединительные (импульсные) трубки между преобразователем и дифманометром. При необходимости передать показания расходомера на значительное расстояние к указанным трём элементам добавляются ещё вторичный преобразователь, преобразующий перемещение подвижного элемента дифманометра в электрический и пневматический сигнал, который по линии связи передаётся к вторичному измерительному прибору. Если первичный дифманометр (или вторичный измерительный прибор) имеет интегратор, то такой прибор измеряет не только расход, но и количество прошедшего вещества.

В зависимости от принципа действия преобразователя расхода данные расходомеры подразделяются на шесть самостоятельных групп:

1. Расходомеры с сужающими устройствами.

2. Расходомеры с гидравлическим сопротивлением.

3. Центробежные расходомеры.

4. Расходомеры с напорным устройством.

5. Расходомеры с напорным усилителем.

6. Расходомеры ударно — струйные.

Рассмотрим поподробнее расходомеры с сужающим устройством, так как они получили наибольшее распространение в качестве основных промышленных приборов для измерения расхода жидкости, газа и пара, в том числе на нашем предприятии. Они основаны на зависимости от расхода перепада давления, создаваемого сужающим устройством, в результате которого происходит преобразование части потенциальной энергии потока в кинетическую.

Имеется много разновидностей сужающих устройств. Так на рис.1, а и б показаны стандартные диафрагмы, на рис. 1, в – стандартное сопло, на рис. 1, г, д, е – диафрагмы для измерения загрязнённых веществ – сегментная, эксцентричная и кольцевая. На следующих семи позициях рис. 1 показаны сужающие устройства применяемые при малых числах Рейнольдса (для веществ с большой вязкостью); так, на рис. 1, ж, з, и изображены диафрагмы – двойная, с входным конусом, с двойным конусом, а на рис.1, к, л, м, н – сопла-полукруга, четверть круга, комбинированное и цилиндрическое. На рис. 1, о изображена диафрагма с переменной площадью отверстия, автоматически компенсирующая влияние изменения давления и температуры вещества. На рис. 1, н, р, с, т приведены расходомерные трубы – труба Вентури, сопло Вентури, труба Далла и сопло Вентури с двойным сужением. Для них характерна очень маленькая потеря давления.

Устройства сужающие

Рисунок 1.

Разность давлений до и после сужающего устройства измеряется дифманометром. В качестве примера рассмотрим принцип действия приборов 13ДД11 и Сапфир –22ДД.

Принцип действия преобразователей разности давлений 13ДД11

Рисунок 2.

Принцип действия преобразователей разности давлений 13ДД11 основан на пневматической силовой компенсации. Схема прибора представлена на рис. 2. В плюсовую 2 и минусовую 6 полости преобразователя, образованные фланцами 1, 7 и мембранами 3,5 подводится давление. Измеряемый перепад давления воздействует на мембраны, приваренные к основанию 4. Внутренняя полость между мембранами заполнена кремнийорганической жидкостью. Под воздействием давления мембраны поворачивают рычаг 8 на небольшой угол относительно опоры – упругой мембраны вывода 9. Заслонка 11 перемещается относительно сопла 12, питаемого сжатым воздухом. При этом сигнал в линии сопла управляет давлением в усилителе 13 и в сильфоне отрицательной обратной связи 14. Последний создает момент на рычаге 8, компенсирующий момент, возникающий от перепада давления. Сигнал, поступающий в сильфон 14,пропорциональный измеряемому перепаду давления, одновременно направляется в выходную линию преобразователя. Пружина корректора нуля 10 позволяет устанавливать начальное значение выходного сигнала, равное 0,02 МПа. Настройка преобразователя на заданный предел измерения осуществляется перемещением сильфона 14 вдоль рычага 8. Измерительные пневматические преобразователи других модификаций выполнены аналогично.

Преобразователь разности давлений Сапфир-22ДД

Рисунок 3.

Преобразователи разности давлений Сапфир-22ДД (рис. 3) имеет две камеры: плюсовую 7 и минусовую 13, к которым подводится давление. Измеряемая разность давлений воздействует на мембраны 6, приваренные по периметру к основанию 9. Фланцы уплотняются прокладками 8. Внутренняя полость 4, ограниченная мембранами и тензопребразователем 3, заполненная кремнийоранческой жидкостью. Под воздействием разности давлений мембраны перемещают тягу 11, которая через шток 12 передает усилие на рычаг тензопреобразователя 3. Это вызывает прогиб мембраны тензопреобразователя 3 и соответствующий электрический сигнал, передаваемый в электронное устройство 1 через гермовывод 2.

Расходомеры постоянного перепада давления.

Принцип их действия основан на восприятии динамического напора контролируемой среды, зависящего от расхода, чувствительным элементом (например, поплавком), помещенным в поток. В результате воздействия потока чувствительный элемент перемещается, и величина перемещения служит мерой расхода.

Приборы, работающие на этом принципе – ротаметры (рис. 4).

Ротаметр

Рисунок 4.

Поток контролируемого вещества поступает в трубку снизу вверх и увлекает за собой поплавок, перемещая его вверх, на высоту Н. При этом увеличивается зазор между ним и стенкой конической трубки, в результате уменьшается скорость жидкости (газа) и возрастает давление над поплавком.

На поплавок действует усилие снизу вверх:

G1=P1·S ⇒ Р1=G1/S

и сверху вниз

G2=P2·S+q ⇒ P2=G2/S-q/S,

где P1, P2 – давление вещества на поплавок снизу и сверху;

S — площадь поплавка;

q — вес поплавка.

Когда поплавок находится в состоянии равновесия G1=G2, следовательно:

P1 — P2=q/S,

так как q/S=const, значит:

P1 — P2=const,

поэтому такие приборы называют расходомерами постоянного перепада давления.

При этом объемный расход может быть рассчитан по формуле:

Расход объемный

где Fс – площадь сечения конической трубки на высоте h, м2; F-площадь верхней торцевой поверхности поплавка, м2; p-плотность измеряемой среды, кг·м3; с – коэффициент, зависящий от размеров и конструкции поплавка.

Ротаметры со стеклянной трубкой применяются только для визуальных отсчётов расхода и лишены устройств, для передачи сигнала на расстояние.

Ротаметр не следует устанавливать в трубопроводах, подверженным сильным вибрациям.

Длина прямого участка трубопровода перед ротаметром должна быть не менее 10 Ду, а после ротаметра не менее 5 Ду.

Устройство ротаметра

Рисунок 5.

Ротаметр пневматический фторопластовый типа РПФ

Ротаметры типа РПФ предназначены для измерения объемного расхода плавно меняющихся однородных потоков чистых и слабозагрязненных агрессивных жидкостей с дисперсными немагнитными включениями инородных частиц, нейтральных к фторопласту и преобразование величины расхода в унифицированный пневматический сигнал.

РПФ состоит из ротаметрической и пневматической части (пневмоголовки).

Корпус ротамометрической части 1 (рис.5) представляет собой прямоточную трубу с приваренными на концах кольцами 6.

Внутри корпуса расположены: перемещающийся под действием измеряемого потока поплавок 2, жестко связанный со сдвоенными магнитами 7, конус мерительный 4, направляющие 3, 12.

Корпус ротамометрической части футерован фторопластом-4, а направляющие 3, 12, поплавок 2, конус мерительный 4 выполнены из фторопласта-4.

Пневмоголовка предназначена для обеспечения местных показаний и представляет круглый корпус 20, в котором размещены: сервопривод 16, реле пневматическое 13, манометры 18, стрелка 9, механизм перемещения 10, шкала местных показаний, входной и выходной штуцера.

Сервопривод 16 представляет собой металлический стакан 15, в котором находится узел сильф она 17. Сильфон 17 разделяет внутреннюю полость сервопривода от внешней среды и в комплекте с пружиной 24 служит в качестве упругого элемента.

Нижний конец сильфона припаян к подвижному дну, с которым жестко связан шток 14. На противоположном конце штока 14 закреплено сопло 25 и реле механическое 8.

При работе реле механическое обеспечивает закрытие сопла заслонкой при увеличении расхода и открытие сопла при уменьшении расхода.

Реле механическое (рис.6) состоит из кронштейна 1, закрепленного на колодке 3, заслонки 2, установленной вместе со следящим магнитом 5 на кернах в скобе 4. Скоба 4 крепится винтами к колодке 3. Регулировка положения реле механического относительно сопла производится перемещением реле механического вдоль оси штока сервопривода.

Реле расхода механическое

Рисунок 6.

Механизм перемещения 10 шарнирно соединен с реле механическим 8 тягой 11, преобразует перемещение вертикальное штока 14 во вращательное движение стрелки 9.

Все детали пневмоголовки защищены от воздействия окружающей среды (пыли, брызги) и механических повреждений крышкой.

Принцип действия ротаметра основан на восприятии поплавком, перемещающемся в мерительном конусе 4, динамического напора, проходящего снизу вверх измеряемого потока (рис.6).

При подъеме поплавка проходной зазор между мерительной поверхностью конуса и кромкой поплавка увеличивается, при этом уменьшается перепад давления на поплавке.

Когда перепад давления становится равным весу поплавка, приходящемуся на единицу площади его поперечного сечения, наступает равновесие. При этом каждой величине расхода измеряемой жидкости при определенной плотности и кинематической вязкости соответствует строго определенное положение поплавка.

В принципе магнитопневматического преобразователя используется свойство восприятия следящим магнитом 6, механического перемещения сдвоенных магнитом 7, жестко связанным с поплавком, и преобразование этого перемещения в выходной пневматический сигнал (рис.7).

Перемещение поплавка вверх вызывает изменение положения следящего магнита 6 и жестко связанной с ним заслонки 5. При этом зазор между соплом и заслонкой уменьшается, командное давление увеличивается, Увеличивая давление на выходе пневматического реле 4 (рис. 7).

Усиленный по мощности сигнал поступает во внутреннюю полость стакана 15 (рис.5). Под действием этого сигнала происходит сжатие упругого элемента (сильфон 17-пружина 24) сервопривода 16, перемещение вверх штока 14, жестко связанного с нижним концом сильфона 17, сопла 25, реле механического 8, укрепленных на штоке 14.

Движение штока 14 происходит до тех пор, пока следящий магнит 5 с заслонкой не займут первоначальное положение относительно сдвоенных магнитов 7.

Принцип действия ротаметра

Рисунок 7.

При движении поплавка вниз изменяется положение следящего магнита 5 и связанной с ним заслонки, при этом зазор между заслонкой и соплом 25 увеличивается, уменьшая тем самым командное давление и давление на выходе пневматического реле. Избыточный воздух из полости стакана 15 (рис. 4) через клапан пневматического реле стравливается в атмосферу. Так как давление в стакане 15 уменьшилось, шток 14 под действием упругого элемента (сильфон-пружина) месте с механическим реле 8 перемещается вниз (в сторону движения поплавка) до тех пор, пока следящий магнит 5 с заслонкой не займут первоначальное положение относительно сдвоенных магнитов.

Пневматическое реле предназначено для усиления выходного пневмосигнала по мощности.

Ротаметр специальный прямоточный ВИР.

Принцип действия расходомера ВИР основан на ротаметрическом способе измерения, то есть мерой расхода в нём является вертикальное перемещение поплавка под воздействием обтекающего его потока жидкости. Перемещение поплавка преобразуется в электрический сигнал.

Ротаметр специальный прямоточный ВИР

Рисунок 8.

Принципиальная электрическая схема ВИР со схемой подключения к преобразователю (КСД) представлена на рис. 8.

ВИР представляет из себя ротаметрическую пару (мерительный конус, поплавок-сердечник), реагирующую на изменение потока измеряемой жидкости, посредством дифференциального трансформатора Т1, преобразующего перемещение поплавка-сердечника в напряжение переменного тока. Преобразователь (КСД) предназначен для питания первичной обмотки трансформатора Т1 датчика и преобразования напряжения переменного тока, индуктирующегося во вторичной обмотке дифференциального трансформатора Т1 датчика, в показания на шкале прибора, соответствующее протекаемому расходу жидкости.

Изменение напряжения на вторичной обмотке дифференциального трансформатора Т2, вызванное перемещением сердечника-поплавка в датчике, усиливается и передаётся на реверсивный двигатель.

Подвижный сердечник дифференциального трансформатора Т2 является элементом отрицательной обратной связи, компенсирующей изменение напряжения на входе трансформатора Т2. Перемещение сердечника осуществляется через кулачок при вращении реверсивного двигателя РД. Одновременно вращение реверсивного двигателя передаётся на стрелку прибора.

Датчик ротаметра (рис. 9) состоит из корпуса 1, ротаметрической трубки 2, катушки дифференциального трансформатора 3, поплавка-сердечника 4 и клеммной коробки 5.

Корпус представляет собой цилиндр с крышками 9, внутри которого проходит ротаметрическая труба, а к его боковой поверхности приварена клеммная коробка с крышкой 6, которая крепится шестью болтами. В корпусе находится катушка дифференциального трансформатора, залитая компаундом 10 (ВИКСИНТ К-18).

Ротаметрическая труба представляет собой трубу из нержавеющей стали, на концах которой приварены фланцы 7, служащие для крепления датчика на технологическую линию. Внутри ротаметрической трубы находится фторопластовая труба 8 с внутренним мерительным конусом.

Датчик ротаметра

Рисунок 9.

Катушка дифференциального трансформатора намотана непосредственно на ротаметрическую трубу, концы обмоток катушки присоединены к проходным зажимам клеммной коробки.

Поплавок-сердечник состоит из поплавка специальной конструкции, выполненного из фторопласта-4 и сердечника из электротехнической стали, расположенного внутри поплавка.

Катушка дифференциального трансформатора с поплавком сердечником составляет дифференциальный трансформатор датчика, первичная обмотка которого питается от преобразователя, а напряжение, индуктируемое во вторичной обмотке, поступает на преобразователь.

Электромагнитные расходомеры.

В основе электромагнитных расходомеров лежит взаимодействие движущейся электропроводной жидкости с магнитным полем, подчиняющееся закону электромагнитной индукции.

Основное применение получили такие электромагнитные расходомеры, у которых измеряется ЭДС, индуктируемая в жидкости, при пересечении ею магнитного поля. Для этого (рис. 10) в участок 2 трубопровода, изготовленного из немагнитного материала, покрытого изнутри неэлектропроводной изоляцией и помещённого между полюсами 1 и 4 магнита или электромагнита, вводятся два электрода 3 и 5 в направлении, перпендикулярном как к направлению движения жидкости, так и к направлению силовых линий магнитного поля. Разность потенциалов Е на электродах 3 и 5 определяется уравнением:

Разность потенциалов на электродах

где – В – магнитная индукция; D – расстояние между концами электродов, равное внутреннему диаметру трубопровода; v и Q0 – средняя скорость и объёмный расход жидкости.

Принцип работы расходомера электромагнитного

Рисунок 10.

Таким образом, измеряемая разность потенциалов Е прямо пропорциональна объёмному расходу Q0. Для учёта краевых эффектов, вызываемых неоднородностью магнитного поля и шунтирующим действием трубы, уравнение умножается на поправочные коэффициенты kм и kи, обычно весьма близкие к единице.

Достоинства электромагнитных расходомеров: независимость показаний от вязкости и плотности измеряемого вещества, возможность применения в трубах любого диаметра, отсутствие потери давления, линейность шкалы, необходимость в меньших длинах прямых участков труб, высокое быстродействие, возможность измерения агрессивных, абразивных и вязких жидкостей. Но электромагнитные расходомеры неприменимы для измерения расхода газа и пара, а также жидкостей диэлектриков, таких, как спирты и нефтепродукты. Они пригодны для измерения расхода жидкости, у которых удельная электрическая проводимость не менее 10-3 См/м.

Счётчики.

По принципу действия все счетчики жидкостей и газов делятся на скоростные и объемные.

Скоростные счетчики устроены таким образом, что жидкость, протекающая через камеру прибора, приводит во вращение вертушку или крыльчатку, угловая скорость которых пропорциональна скорости потока, а, следовательно, и расходу.

Объемные счетчики. Поступающая в прибор жидкость (или газ) измеряется отдельными, равными по объему дозами, которые затем суммируются.

Скоростной счетчик с винтовой вертушкой.

Скоростной счетчик с винтовой вертушкой служит для измерения больших объёмов воды.

Счетчик с винтовой вертушкой

Рисунок 11.

Поток жидкости 4 рис. 11 поступая в прибор, выравнивается струевыпрямителем 3 и попадает на лопасти вертушки 2, которая выполнена в виде многозаходного винта с большим шагом лопасти. Вращение вертушки через червячную пару и передаточный механизм 4 передается счетному устройству. Для регулировки прибора одна из радиальных лопастей струевыпрямителя делается поворотной, благодаря чему, изменяя скорость потока, можно укорить или замедлить скорость вертушки.

Скоростной счетчик с вертикальной крыльчаткой.

Этот счетчик применяется для измерения сравнительно небольших расходов воды и выпускается на номинальные расходы от 1 до 6,3 м3/ч при калибрах от 15 до 40 мм.

Счетчик с вертикальной крыльчаткой

Рисунок 12.

В зависимости от распределения потока воды, поступающей на крыльчатку, различают две модификации счетчиков — одноструйные и многоструйные.

На рис.12 показано устройство одноструйного счетчика. Жидкость подводится к крыльчатке тангенциально к окружности, описываемой средним радиусом лопастей.

Преимуществом многоструйных счетчиков является сравнительно небольшая нагрузка на опору и ось крыльчатки, а недостатком — более сложная по сравнению с одноструйными конструкция, возможность засорения струеподводящих отверстий. Вертушки и крыльчатки счетчиков изготавливают из целлулоида, пластических масс и эбонита.

Счетчик устанавливается на линейном участке трубопровода, при чем на расстоянии 8-10 D перед ним (D-диаметр трубопровода) не должно быть устройств, искажающих поток (колена, тройники, задвижки и др.). В тех случаях, когда все же ожидается некоторое искажение потока, перед счетчиками устанавливают дополнительные струевыпрямители.

Счетчики с горизонтальной вертушкой можно устанавливать на горизонтальных, наклонных и вертикальных трубопроводах, тогда как счетчики с вертикальной крыльчаткой — только на горизонтальных трубопроводах.

Жидкостной объёмный счётчик с овальными шестернями.

Действие этого счетчика основано на вытеснении определенных объемов жидкости из измерительной камеры прибора овальными шестернями, находящимися в зубчатом зацеплении и вращающимися под действием разности давлений на входном и выходном патрубках прибора.

Счётчик объёмный с овальными шестернями

Рисунок 13.

Схема такого счетчика приведена на рис 13. В первом исходном положении (рис. 13, а) поверхность га шестеренки 2 находится под давлением поступающей жидкости, а равная ей поверхность вг — под давлением выходящей жидкости. Меньшим входного. Эта разность давлений создает крутящий момент, вращающий шестерню 2 по часовой стрелке. При чем жидкость из полости 1 и полости, расположенной под шестерней 3, вытесняется в выходной патрубок. Крутящий момент шестерни 3 равен нулю, так как поверхности а1г1 и г1в1 равны и находятся под одинаковым входным давлением. Следовательно, шестерня 2-ведущая, шестерня 3-ведомая.

В промежуточном положении (рис. 13, б) шестерня 2 вращается в прежнем направлении, но ее крутящий момент будет меньше, чем в положении а, из-за противодействующего момента, созданного давлением на поверхность дг (д-точка контакта шестерней). Поверхность а1в1 шестерни 3 находится под давлением входящей, а поверхность в1 б1 -под давлением выходящей. Шестерня испытывает крутящий момент, направленный против часовой стрелки. В этом положении обе шестерни ведущие.

Во втором исходном положении (рис. 13, в) шестерня 3 находится под действием наибольшего крутящего момента и является ведущей, в то время как крутящий момент шестерни 2 равен нулю, она ведомая.

Однако суммарный крутящий момент обеих шестерен для любого из положений остается постоянным.

За время полного оборот шестерен (один цикл работы счётчика) полости 1 и 4 два раза заполняются и два раза опорожняются. Объем четырех доз жидкости, вытесненных из этих полостей, и составляет измерительный объем счетчика.

Чем больше расход жидкости через счетчик, тем с большей скоростью вращаются шестерни. Вытесняя отмеренные объемы. Передача от овальных шестерен счетному механизму осуществляется через магнитную муфту, которая работает следующим образом. Ведущий магнит укреплен в торце овальной шестерни 3, а ведомый на оси, связывающий муфту редуктором 5. Камера, где расположены овальные шестерни, отделена от редуктора 5 и счетного механизма 6 немагнитной перегородкой. Вращаясь, ведущий вал укрепляет за собой ведомый.

Измерение расхода

Расход – это продукт или сырье проходящий через поперечное сечение трубопровода в единицу времени.

Существуют два вида расхода – объемный (Qv) и массовый (Qm). Они рассчитываются по формулам:

Формула расчета объемного и массового расхода

где α – расчетный коэффициент расхода;

К²t – температурный коэффициент (коэффициент расширения), эта величина выбирается из справочника;

ρ — плотность продукта или сырья;

d20 – диаметр сужающего устройства при температуре t = 20˚С;

∆Р – перепад давления на сужающем устройстве.

Из этих формул видно, что разница между объемным и массовым расходом заключается в подкоренном выражении, т.е. в одном случае под корнем перепад давления ∆Р делится на плотность ρ, а в другом случае эти две величины перемножаются.

Единицы измерения объемного расхода: м3/ч; м3/с.

Единицы измерения массового расхода: кг/ч; кг/с; т/ч; т/с.

При измерении расхода существует такое понятие, как »Количество вещества». Количество вещества – это продукт или сырье, проходящее через поперечное сечение трубопровода за промежуток времени (смену, вахту, час, месяц и т.д.).

Количество вещества измеряется счетчиками, которые устанавливаются:

1. По месту (в трубопроводе);

2. В операторной (вторичный прибор).

Количество вещества – выражают в единицах объема (м3) или массы (кг).

Существует несколько методов измерения расхода:

1. Расходомеры постоянного перепада давления.

2. Расходомеры переменного перепада давления.

3. Электромагнитные расходомеры.

4. Турбинные расходомеры.

5. Акустические расходомеры.

6. Приборы измеряющие расход по эффекту »Кориолисовых сил».

7. Тепловые расходомеры.

8. Вихревые расходомеры.

Метод постоянного перепада давления.

Ротаметр – расходомеры обтекания. Ротаметры устанавливают в вертикальный участок трубопровода. Он представляет собой стеклянную трубку в форме конуса, обращенную широким концом вверх, внутри которой находится поплавок. Наибольшее давление будет в кольцевом зазоре между поплавком и стенками сосуда, а наименьшее сверху.

Схема стеклянного ротаметра

Поплавок имеет:

а) нижнюю коническую часть;        

б) среднюю цилиндрическую часть;         

в) верхнюю со скошенными бортиками, косые линии предназначены для предания поплавку устойчивости.

В зависимости от пределов измерения поплавок изготовляют из: эбонита, дюралюминия или нержавеющей стали. Шкала нанесена непосредственно на стеклянной трубке.

Ротаметр РП, РПФ, РПОПреимущества ротаметров:

1. Простота конструкции

2. Возможность измерения малых расходов

3. Значительный диапазон измерения

4. Возможность измерения агрессивных сред

5. Равномерная шкала.

Ротаметр H-250

Существуют ротаметры с электрической дистанционной передачей показаний. Они являются бесшкальными датчиками. Ротаметры типа РЭ (ротаметр электрический) – могут использоваться при t˚С от -40˚С до +70˚С.

Используются для измерения расхода неагрессивных жидкостей.

Метод переменного перепада давления.

Для того, чтобы создать перепад давлений в трубопроводе, устанавливают сужающее устройство. На нашем предприятии в качестве сужающего устройства применяют диафрагмы. Конструктивно диафрагма представляет из себя диск с отверстием, который вставляется в трубопровод.

Диафрагма камерная

Принцип работы диафрагмы

Р1 – самое большое давление перед диафрагмой;

Р2, Р3 – промежуток, в котором будет самое маленькое давление;

Р4 – самое большое давление после диафрагмы;

Рn – давление потерь (это и есть перепад давлений между Р и Р4, для которого устанавливается сужающее устройство).

Перепад давления обозначается ∆Р и находится по формуле:

∆Р = Р – Р2

Перед диафрагмой давление измеряемой среды возрастает, а скорость ее перемещения по трубопроводу снижается. После диафрагмы давление измеряемой среды снижается, а скорость ее перемещения возрастает.

Отбор давления производится рядом с сужающим устройством.

Перепад давления ∆Р на сужающем устройстве является мерой расхода. Из формулы определения расхода видно, что они связаны между собой зависимостью через корень квадратный, поэтому на выходе из дифманометра сигнал имеет форму параболы.

Таким образом, если не предусмотреть дополнительного устройства на выходе из дифманометра, то шкала вторичного прибора по всей длине будет неравномерной, но особенно это просматривается в нижней части шкалы.

Для того, чтобы преобразовать нелинейную зависимость в линейную и чтобы шкала была равномерной устанавливают приборы извлечения квадратного корня. Во многих электронных вторичных приборах эти преобразователи устанавливаются программно, т.е. устанавливаются при программировании контроллера.

Существует несколько видов сужающих устройств:

1. Диафрагмы – они подразделяются на стандартные и нестандартные.

Стандартные диафрагмы устанавливаются в трубопроводах таким образом, чтобы скосы были на выходе.

К нестандартным диафрагмам относятся:

а) Конические;

б) Секторные.

Конические диафрагмы применяют для измерения расхода запыленных, загрязненных и очень вязких сред. Их устанавливают в трубопроводе таким образом, чтобы скоси были на входе.

Секторные диафрагмы применяют для измерения сыпучих материалов.

2. Сопло Вентури.

3. Труба Вентури.

4. Дроссель (переменный, постоянный).

Датчик дифференциального давленияСужающие устройства соединяются с дифманометрами соединительными импульсными проводками, а те в свою очередь преобразуют перепад давления в унифицированный пневматический или электрический сигнал. Этот сигнал передается на вторичный прибор, а затем, если имеется компьютер, на монитор.

Электромагнитные расходомеры.

Расходомер электромагнитный ADMAG

Электромагнитные расходомеры применяют для измерения расхода электропроводящих жидкостей.

Расходомер представляет собой отрезок трубы из нержавеющей стали, с расположенными снаружи полюсами электромагнита. По оси в трубопроводе расположены токосъемные электроды. Участок трубопровода по обе стороны от электродов покрыт электроизоляцией. Роль проводника в таком расходомере выполняет электропроводная жидкость, перемещающаяся по трубопроводу и пересекающая магнитное поле электромагнита. В жидкости будет наводиться ЭДС (электродвижущая сила, т.е. напряжение) пропорциональная скорости ее движения, т.е. расходу жидкости. Степень агрессивности для таких приборов определяется материалом изоляции трубы и электродов первичного преобразователя.

Турбинные расходомеры.

Счетчик турбинный

Турбоквант предназначен для измерения объемного и массового расхода различных жидкостей и газов. Также этот прибор осуществляет суммирование расхода, выдает количество вещества.

Турбинка устанавливается только в горизонтальных трубопроводах. Поток измеряемой среды проходит через турбинку и приводит во вращение ее лопасти. Число оборотов крыльчатки пропорционально расходу. На турбинке установлен преобразователь, который состоит из катушки с магнитным сердечником.

Лопасти крыльчатки выполнены из ферромагнитного сплава (т.е. из не магнитящегося материала). При вращении они поочередно пересекают магнитное поле, которое наводит магнит и в катушке наводится ЭДС в виде импульса, причем число импульсов за один оборот крыльчатки будет равно числу лопастей. Таким образом, частота импульсов пропорциональна расходу. Этот выходной сигнал от турбинки по кабелю поступает на частотомер, т.е. на Турбоквант.

Ультразвуковые расходомеры.

Расходомер ультрозвуковой SITRANS

Принцип действия ультразвуковых расходомеров основан на пьезоэлектрическом эффекте, т.е это фактическая скорость распространения ультразвуков в движущейся среде, которая равна геометрической сумме скорости движения среды и скорости звука в этой среде.

Ультразвуковой расходомер представляет собой отрезок трубы, в который установлены излучатель ультразвука и его приемник. Время, за которое сигнал проходит от излучателя к приемнику преобразуется в величину расхода.

Расходомеры по эффекту »Кориолисовых сил».

Расходомер кориолисовый PROMAS

Принцип работы основан на использовании эффекта Кориолисовых сил.

Конструкция расходомера TRIO-MASS выполнена с использованием двух параллельных труб, что позволяет уменьшить габаритные размеры, увеличить жесткость конструкции и выпускать расходомеры в широком диапазоне диаметров.

 Использование в конструкции TRU-MASS однотрубной спирали дает возможность предлагать широкий диапазон вариантов соединения с трубопроводом.

Расходомер массовый MICRO MATION

При прохождении массовым потоком трубы, к которой приложены принудительные колебания, Кориолисовы силы вызывают крутящий момент в сечении трубы. Труба расходомера постоянно вибрирует со своей резонансной частотой, которая является функцией массы измерительной системы, составленной из массы трубы и протекающей рабочей жидкости.

Как только резонансная частота колебаний начинает изменяться, как результат изменения плотности рабочей жидкости автоматически производится изменение частоты возбуждения внешним источником вибраций. Это позволяет одновременно с измерениями расхода проводить измерения плотности рабочей жидкости. Встроенный температурный датчик позволяет производить эти измерения с поправкой на температуру.

Тепловые расходомеры.

Расходомер термический T-MASS

Принцип действия основан на теплопроводности измеряемого вещества. При постоянной мощности нагревателя количество тепла, забираемое от него потоком, при постоянном расходе будет постоянно.

С увеличением расхода нагрев потока будет уменьшаться, что определяется разностью температур.

Вихревые расходомеры.

Расходомер вихревой МЕТРАН-300

Основаны на явлении возникновения вихрей при встрече потока с телом не обтекаемой формы. В результате от его тела (противоположных граней) будут отлетать вихри.

Скорость отрыва вихрей зависит от расхода вещества.

Принцип действия преобразователя основан на ультразвуковом детектировании вихрей, образующихся в потоке жидкости, при обтекании ею призмы, расположенной поперек потока.

Принцип работы расходомера вихревого МЕТРАН-300

Преобразователь состоит из проточной части и электронного блока. В корпусе проточной части расположены тело обтекания – призма трапецеидальной формы (1) и пьезоизлучатели ПИ1 и ПИ2 (2), пьезоприемники ПП1 и ПП2 (3) и термодатчик (7).

Электронный блок включает в себя генератор (4), фазовый детектор (5), микропроцессорный адаптивный фильтр с блоком формирования выходных сигналов (6).

Ремонт регулирующих и отсечных клапанов

Ремонт регулирующих и отсечных клапанов выполняется только после их демонтажа с технологического трубопровода. Допускается мелкий ремонт клапана по месту, это:

— Набивка сальникового уплотнения;

— Снятие крышек клапана для проверки внутренних элементов регулирующего органа.

Оформление наряда — допуска на производство ремонтных, газоопасных работ, отключение регулирующих клапанов запорной арматурой, сброс остаточного давления на отключенном участке трубопровода, а также подготовка (промывка, пропарка) клапана к ремонту выполняется технологическим персоналом. Демонтаж и монтаж клапана в ремонт выполняет служба главного механика.

Запрещается ослаблять или подтягивать гайку сальникового уплотнения на не отключённом запорной арматурой регулирующем клапане.

Дренирование клапана

Проведение погрузочно — разгрузочных работ согласно требованиям правил промышленной безопасности и охраны труда.

Погрузочно — разгрузочные работы должны производиться под руководством мастера или специально назначенного ответственного опытного рабочего.

Перед началом работы необходимо:

— надеть спецодежду, спец.обувь и другие СИЗ;

— осмотреть место работы, освещение и т.д.;

— о замеченных опасностях доложить мастеру или ответственному.

На рабочем месте не должны находиться люди имеющие ограничения в перемещении тяжестей. Предельно допустимая масса груза при чередовании подъема и перемещения с другой работой не должна превышать:

— для женщин -10 кг;

— для мужчин — 50 кг.

При перемещении тяжестей более 50 кг работа должна производится механизированным способом (лебедка, тельфер, кран-балка, погрузчик, кран — манипулятор, подъемник (вышка)). К выполнению операций по строповке (обвязке, зацепке, закреплению, подвешиванию на крюк машины, установке в проектное положение и отцепке) грузов в процессе производства работ грузоподъемными машинами допускаются специально обученные квалифицированные рабочие — стропалыцики, имеющие удостоверение на право проведения данных работ.

Неполадки пневматических исполнительных устройств с пружинным мембранным исполнительным механизмом.

1. При плавном изменении давления сжатого воздуха в мембранной полости исполнительного механизма шток и затвор односедельного или двухседельного регулирующего органа перемещается рывками.

Возможные причины Способы устранения неполадок
Торможение штока в сальниковом устройстве регулирующего органа вследствие отсутствия смазки или недопустимо большой затяжки сальника Подать смазку в сальниковое устройство с помощью лубрикатора, а если это не приведет к нужным результатам, то осторожно ослабить затяжку сальниковой гайки, наблюдая за тем, чтобы через сальник наружу не стало проникать протекающее вещество

Ремонт клапана смазка сальникового устройства

2.Через сальниковое устройство проникает протекающее вещество (жидкость, пар, газ).

Возможные причины Способы устранения неполадок
Недостаточно смазки, слабая затяжка сальника, плохое качество сальниковой набивки Добавить смазку, подтянуть сальниковую гайку, сменить сальниковую гайку, сменить сальниковую набивку

Ремонт клапана набивка сальника

3. При изменении давления сжатого воздуха в мембранной полости исполнительного механизма от минимального до максимального значения шток и затвор односедельного или двухседельного регулирующего органа не перемещаются полностью из одного крайнего положения в другое.

Возможные причины Способы устранения неполадок
Пружина мембранного исполнительного механизма при настройке была сжата больше, чем следует, и поэтому для преодоления усилий, развиваемых ею, требуется увеличенное давление воздуха по сравнению с необходимым при стандартном натяжении пружины Постепенно ослабить натяжение пружины до величины, обеспечивающей перемещение штока и затвора из одного крайнего положения в другое при изменении давления воздуха в мембранной полости исполнительного механизма от минимального до максимального нормированных значений
Пружина мембранного исполнительного механизма недостаточно сжата при настройке и не может преодолеть сил трения, возникающих в подвижной части исполнительного устройства, а также массы этой части и сил от давления протекающего вещества на затвор (поэтому затвор полностью не поднимается) Постепенно увеличить натяжение пружины до величины, обеспечивающей перемещение затвора из одного крайнего положения в другое при изменении давления воздуха в мембранной полости от минимального до максимального нормированных значений
Затвор при своем ходе упирается в посторонний предмет, попавший в мембранное исполнительное устройство (кокс, песок, металлическая прокладка, гайка и т. п.)

Отключить линию сжатого воздуха от мембранной полости исполнительного устройства, переключив поток на обводную линию, и принять меры к очистке корпуса мембранного исполнительного устройства от посторонних предметов. Убедиться, что поверхности затвора и седел не повреждены

Ремонт клапана регулировка пружины

4. При подаче сжатого воздуха в мембранную полость исполнительного механизма шток не перемещается.

Возможные причины Способы устранения неполадок
Повреждение мембраны вследствие превышения давления сжатого воздуха предельного значения или же вследствие попадания на мембрану (вместе с воздухом или иным путем) масла, бензина или других нефтепродуктов, разрушающе действующих на материал мембраны Разобрать мембранный исполнительный механизм и заменить дефектную мембрану исправной. При этом толщину и число матерчатых прослоек резины следует подобрать одинаковыми с той, которая удаляется

5. При регулировании расхода протекающего вещества затвор мембранного исполнительного устройства чаще всего занимает положение, близкое к одному из крайних.

Возможные причины Способы устранения неполадок
Если при нормальной работе регулятора затвор почти закрывает отверстие седла или, наоборот, открывает его почти полностью и при этом давление в мембранной полости близко к предельному, то это указывает на то, что условный диаметр мембранного исполнительного устройства либо велик, либо мал для данного трубопровода и расхода в нем В соответствии с действительным расходом протекающего по трубопроводу вещества выбрать соответствующий условный проход мембранного исполнительного устройства и при наличии мембранного исполнительного устройства с таким условным проходом установить его. Если подходящего исполнительного устройства в наличии нет и имеется возможность выточить новый затвор, то рассчитать профиль нового затвора и заменить в мембранном исполнительном устройстве старый затвор на новый

Исполнительные механизмы

Устройство клапана

Привод А состоит из:

1 — верхняя крышка, 2 — эластичная мембрана из плотной прорезиненной ткани, 3 — нижняя крышка, 4 — металлический диск, 5 — направляющий стакан, 6 – пружины, 7 – шток, 8 – опора, 9 – гайка, 10 – кронштейн, 11 – диск, 12 – шкала, 13 — соединительной гайкой, 14 – штоком,

Регулирующий орган Б включает в себя:

15 – корпус, 16 – перегородкой, 17 — с цилиндрическими отверстиями, 18 – клапан, 19 – сальник, 20 – лубрикатором

Типы регулирующих органов клапана

Обычно регулирующие органы исполнительных механизмов, устанавливаемых в трубопроводах больших диаметров, выполняются двухседельными (см. рис.б, в, г) для уменьшения усилий на клапан со стороны среды при больших перепадах давления. Односедельные регулирующие органы применятся для установки в трубопроводах малого диаметра и при небольших перепадах давления на клапане (см. рис. а)

Разборка и сборка регулирующего клапана.

Разборка мембранных исполнительных устройств.

Разборку нормально открытого исполнительного устройства производят для выявления состояния отдельных деталей, чистки и ремонта следующим образом.

Все видимые поверхности исполнительного устройства (корпус, мембранный исполнительный механизм и т. д.) обдувают из шланга сжатым воздухом и тщательно очищают от грязи.

Вращая контргайку 5 (рис. 1), освобождают специальную гайку 2, после чего вращением этой гайки отсоединяют шток плунжера от промежуточного штока. Если исполнительное устройство имеет пневматический позиционер, то освобождают его рычаг для возможности отделения мембранного исполнительного механизма от корпуса регулирующего органа. Отворачивают специальную гайку 11 (рис. 2) и отделяют мембранный исполнительный механизм от корпуса регулирующего органа.

Мембрано исполнительный механизм клапана

Рисунок 1.

Ремонт мембранных исполнительных устройств.

При этом крупные механизмы поднимают талями или лебедками. Освобождают шток затвора от гаек. Проверяют вручную легкость перемещения затвора до крайних положений.

Разборка исполнительного устройства регулирующего клапана.

Осторожно отвертывают гайки шпилек или болтов на верхней крышке 4 (рис 2), чтобы не перегрузить отдельные крепежные детали и не снизить их надежность. Эту работу производят в два приема: сначала по способу диаметрально противоположного обхода поворачивают все гайки на 1/8 полного их оборота, а затем в любом порядке отворачивают все гайки. Снизив давление масла в сальниковом устройстве, удаляют лубрикатор (масленку). Помечают положение крышки на корпусе для установки ее в дальнейшем на прежнее место. Осторожно, чтобы не повредить шток и затвор, отделяют верхнюю крышку 4 от корпуса 3. Если крышка тяжелая, то подъем ее осуществляют талями или лебедкой. При подъеме следят за строго вертикальными перемещениями крышки.

Регулирующий орган клапана

Рисунок 2.

Удаляют затвор 5 со штоком 6 и тщательно очищают их поверхность от грязи и остатков сальниковой набивки. При этом запрещается пользоваться острым металлическим инструментом (зубилом, ножом, шилом и т.п.) во избежание повреждения очищаемых поверхностей. Отворачивают накидную гайку 8 и удаляют грундбуксу 9, кольца 15 и 12, втулку 13 и остатки сальниковой набивки 14 и 10. Сальниковую камеру, грундбуксу, кольца и втулку тщательно очищают от следов набивки, не применяя при этом острых металлических инструментов.

Отмечают положение нижней крышки 2 относительно корпуса. Отворачивают гайки на шпильках или болтах и отделяют нижнюю крышку 2 от корпуса 3 клапана. Отворачивают пробку 19. Производят промывку и чистку корпуса и крышек. Закончив чистку нижней крышки, заворачивают пробку 19. Промывают и очищают от наслоений седла 1 и 16 и при необходимости замены или ремонта выворачивают их из корпуса.

В нормально закрытых исполнительных устройствах снимают сначала нижнюю крышку, а затем через образовавшееся отверстие удаляют затвор со штоком.

При разборке мембранных исполнительных устройств, имеющих конструктивные отличия от описанной конструкции, учитывают болтовое крепление мембранного исполнительного механизма к крышке регулирующего органа, соединение штоков посредством резьбовой втулки со стопорными винтами и крепление штока к затвору посредством разъемной головки.

Сборка исполнительного устройства регулирующего клапана.

Сборку нормально открытого исполнительного устройства с пневматическим позиционером производят следующим образом (обозначения приведены на рис. 2).

1. В корпус 3 регулирующего органа ввертывают седла 1 и 16 до отказа. При этом не допускается применение зубил, наставок и т.п. инструментов и посадка седла в гнезда на сурике или на графите с маслом. Ввертывание седел выполняют специальными ключами или приспособлениями. Седло должно ввинчиваться с усилием, т.е. должна иметь место плотная посадка с незначительным натягом; шатание седла при ввинчивании не допускается. При условном проходе регулирующего органа Dy = 20 мм ввертывание седла производят двое рабочих, используя рычаг длиной 220 мм. При этом они создают крутящий момент 151 Нм (1540 кгс/см2) при усилии на рычаге 700 Н (70 кгс).

При условном проходе регулирующего органа Dy = 50 мм двое рабочих, используя рычаг длиной 1300 мм, при ввертывании седла создают крутящий момент 892 Нм (9100 кгс/см2) при усилии на рычаге 700 Н (70 кгс). При условном проходе Dy = 100 мм для ввертывания седла требуется уже действие четырех рабочих, использующих рычаг длиной 2500 мм и создающих крутящий момент 2432 Нм (35 000 кгс/см2) при усилии на рычаге ключа 1,4 кН (140 кгс).

При ввертывании натуго седло может деформироваться. Отсутствие деформации определяют посредством контрольной плиты. Деформированное седло заменяют. Установка между телом корпуса регулирующего органа и седлом различных прокладок не дает положительных результатов.

2. Под нижнюю крышку 2 устанавливают алюминиевую или стальную прокладку 18 толщиной 2 мм, после чего помещают нижнюю крышку на свое место, совмещая ранее нанесенные при разборке регулирующего органа отметки на крышке и корпусе, и закрепляют крышку гайками на шпильках или болтах. Алюминиевую прокладку ставят, если регулирующий орган не имеет ребристой рубашки, т.е. будет работать при температуре рабочей среды не выше 200 °С, а стальную прокладку ставят, если регулирующий орган имеет ребристую рубашку, т. е. рассчитан для работы при температуре протекающего вещества выше 200 °С, например до 450 °С.

Вместо алюминиевых или стальных прокладок допускается применение паронитовых или клингеритовых прокладок толщиной 2 мм, но они менее надежны по сравнению с алюминиевыми или стальными, вследствие незначительной ширины кольцевой поверхности прокладок. Не допускается применение паронитовых или клингеритовых прокладок со следами излома, морщинами и трещинами. По поверхности и краям допускается незначительная ворсистость.

Паранит

Прокладки при загибе на 180° вокруг стержня с диаметром 42 мм не должны ломаться, трескаться и расслаиваться. Завертывание гаек на шпильках или болтах вначале производят нормальным ключом без рычага, с затягиванием шпилек или болтов в диаметральном положении. После круговой затяжки шпилек или болтов ключом нормальной длины применяют рычаги, соблюдая правило крестообразно­го обхода гаек. При креплении гаек натуго не допускаются удары кувалдой по ключу. В этом случае применяют удлиненные гаечные ключи или на короткие ключи надевают трубки для удлинения рукоятки. Затягивать гайки на шпильках или болтах диаметром до 16 мм должен один рабочий, применяя рычаг длиной 500 мм, на шпильках или болтах диаметром от 17 до 25 мм — двое рабочих, при­меняя рычаг длиной 1000 мм, на шпильках или болтах от 26 до 48 мм — трое рабочих, применяя рычаг длиной 1500 мм. Крышка считается закрепленной после трехкратного подтягивания гаек на всех шпильках (болтах) гаечным ключом с рычагом.

3. Установив корпус регулирующего органа с нижней крышкой на тиски, если позволяют размеры корпуса, или при положении указанных деталей на полу помещения, если регулирующий орган велик по габаритам, производят притирку посадочных поверхностей плунжера и седел следующим образом. Посадочные поверхности плунжера и седел промывают бензином и вытирают насухо. Притирку производят, например, смесью наждачного порошка с машинным маслом. Наждачный порошок получают, отобрав магнитом металлическую часть пыли, остающейся при заточке резцов на наждачных кругах. Нанесенный на притираемые поверхности слой должен быть равномерным и не слишком густым. После шестисемикратного поворота плунжера рукой по дуге вправо и влево на 1/4 окружности плунжер слегка приподнимают и, повернув на 180° по часовой стрелке, вновь опускают на седло и повторяют операцию притирания.

Перекладывание плунжера повторяют пять раз, после чего притираемые поверхности промывают бензином и вытирают насухо. Повторяют притирку, применяя микропорошки (от М-28 до М-7), после чего производят доводку пастой ГОИ (Государственного оптического института имени С. И. Вавилова). Паста ГОИ выпускается для грубой доводки — черного цвета, для средней — темно-зеленого и тонкой — светло-зеленого. Перед нанесением пасты притираемые поверхности смачивают керосином. При окончательной доводке слой пасты, наноси­мый на поверхности седел и затвора, должен быть мини­мальным. При хорошей притирке поверхности должны быть совершенно одинаковые «на отблеск», без бликов, штрихов и т. п. Затвор при подъеме должен присасываться к седлам в корпусе. Задачей притирки является обеспечение плотной и одновременной посадки затвора на седла в корпусе. Весь процесс притирки затвора и седел ведут, стараясь не создавать добавочного давления затвора на седла, кроме массы самого затвора.

4. Ввертывают шток 6 в затвор 5 (рис. 2) и стопорят его штифтом, после чего затвор со штоком устанавливают на место, т. е. на седла. Со штока удаляют крепежные гайки (рис.3).

5. Устанавливают верхнюю алюминиевую или стальную прокладку 17 толщиной 2 мм, после чего осторожно помещают верхнюю крышку 4 на свое место, совмещая отметки на крышке и корпусе, сделанные ранее при разборке регулирующего органа, и закрепляют крышку гайками на шпильках или болтах. Затяжку гаек выполняют методом, указанным при описании установки нижней крышки.

6. Устанавливают нижнее сменное металлическое кольцо сальника 15, затем кольца сальниковой набивки 14 и втулку сальника («фонарь») 13. Подачу сальниковых колец внутрь втулки 7 крышки производят отрезком трубки, имеющей внутренний диаметр, достаточный для того, чтобы ее можно было насадить на шток затвора. Над нижним сменным кольцом 15 толщина сальниковой набивки 14 должна быть такой, чтобы нижние отверстия втулки 13 располагались против отверстия для лубрикатора (масленки). Устанавливают лубрикатор и заполняют его и втулку 13 смазкой.

Плунжерная пара клапана

Рисунок 3.

Смазка к стальным клапанам — оссоголин марки 300-AAA; к чугунным клапанам – смазка марки НК-50. Затем устанавливают верхнее сменное металлическое кольцо 12, несколько колец сальниковой набивки 10, грундбуксу 9. Толщина сальниковой набивки над верхним сменным кольцом 12 должна быть такой, чтобы грундбукса 9 после ее установки выступала из втулки 7 верхней крышки на 80 % своей высоты.

Этим достигается возможность перемещения грундбуксы вниз при затяжке сальника. Для стальных регулирующих органов используют сальниковые кольца из прессованного асбеста, а для чугунных — асбестовый шнур, пропитанный специальным составом. В последнем случае берут асбестовый шнур и варят его в таком составе: 18% графита, 11% резинового клея, 5% тавота 66 % вазелина. Для приготовления резинового клея 200 г невулканизированной резины растворяют при нагревании в 250 г вазелинового масла. Состав приготовляют следующим образом: вазелин и тавот расплавляют на водяной бане, после чего раствор снимают с бани и в него при энергичном перемешивании вливают резиновый клей, а затем также при энергичном перемешивании порциями всыпают графит до загустения, в результате чего раствор считают готовым.

Приготовление колец из шнура производят, навивая шнур на стержень, имеющий одинаковый диаметр со штоком, и разрезая шнур под углом (косая разрезка), как показано на рис. 4. Заготовленные кольца опрессовывают каждое в отдельности в приспособлении, представляющем собой по размерам копию сальникового устройства регулирующего органа, после чего хранят в закрытых коробках во избежание загрязнения. При укладке в сальник соединение кольца выполняют внахлестку, срезами под 45°. Стыки отдельных колец при этом смещают относительно друг друга на 90° согластно ГОСТ 5152-84. Надевают накидную гайку 8 и, вращая ее рукой без помощи ключа, затягивают сальник. Затяжку сальника считают нормальной, когда шток, будучи предварительно поднятым рукой, а затем отпущенным, плавно опускается под действием собственного веса. С повышением давления возникает необходимость в более значительной затяжке сальника. Нужная герметичность сальника достигается увеличением давления смазки от лубрикатора. Устанавливают мембранный исполнительный механизм на регулирующий орган и закрепляют его специальной гайкой 11 (рис. 2).

Сальниковая набивка

Рисунок 4. Приготовление колец сальниковой набивки

1 — сальниковый шнур; 2 — стержень; 3 — линия разреза.

9. Навинчивают гайку на шток, после чего второй гайкой ее стопорят. Надевают рычаг от позиционера на шток, затем указатель 1 (рис. 1), после чего навинчивают на шток специальную гайку 2, которой соединяют шток затвора с промежуточным штоком. Посредством гайки 5 фиксируют положение гайки 2. Если при этом указатель/окажется смещенным относительно шкалы 6 положения затвора, то перемещают последнюю так, чтобы против указателя оказалась надпись «Открыто».

Регулировка хода штока клапана

Закрепляют позиционер на корпусе мембранного исполнительного механизма и соединяют рычаг с тягой, после чего собранное исполнительное устройство поступает на регулировку.

Сборка нормально закрытого исполнительного устройства отличается от описанной сборки тем, что соответственно меняют положение седел и затвора и после установки верхней крышки, не устанавливая нижнюю крышку, производят притирку затвора и седел. В дальнейшем изменяют положение шкалы поворотом на 180°.

При регулировке в мембранную полость подают давление сжатого воздуха и, изменяя натяжение пружины 4, добиваются полного хода затвора при изменении давления от минимального до максимального значения. Регулировку ведут ключом 7, вращая резьбовую втулку 3. При давлении, равном 50 % максимального давления в мембранной полости исполнительного устройства, верхний рычаг позиционера должен быть параллелен рычагу, закрепленному на штоке затвора. В противном случае регулируют длину вертикальной тяги, прикрепленной нижним концом к указанному рычагу и передающей его движение к механизму позиционера.

Сборку мембранных исполнительных устройств иной конструкции производят в такой же последовательности, как указано выше, но при этом учитывают конструктивные особенности этих исполнительных устройств, а именно: болтовое крепление мембранного исполнительного механизма к верхней крышке регулирующего органа, соединение штоков посредством резьбовой втулки со стопорными винтами и крепление штока к затвору посредством разъемной головки, другую конструкцию связи позиционера со штоком затвора. При сборке устанавливают паронитовые прокладки толщиной 2 мм под верхнюю и нижнюю крышки корпуса регулирующего органа и толщиной 1 мм под колпачок головки затвора. При отсутствии указателей положения затвора укрепляют на кронштейне посредством хомутика шкальную пластинку, под резьбовую втулку помещают указатель.

Переделка нормально открытого исполнительного устройства в нормально закрытое.

Нормально открытое исполнительное устройство отличается от нормально закрытого только расположением седел, затвора и шкальной пластинки. На рис. 2 представлено нормально открытое исполнительное устройство. Для переделки этого устройства в нормально закрытое, руководствуясь изложенной методикой разборки и сборки этих устройств, отделяют верхнюю 4 и нижнюю 2 крышки; сняв шпильку, вывинчивают шток 6 из затвора 5 и затем, завинтив шток 6 в противоположный конец затвора 5, фиксируют это положение шпиль­кой; вывинчивают седла I и 16 и меняют их местами, т. е. седло 1 ввинчивают на место седла 16 и, наоборот, седло 16 ввинчивают на место, занимаемое ранее седлом 1; устанавливают затвор, пропуская шток снизу через отверстия седел; собирают исполнительное устройство; шкальную пластинку устанавливают так, чтобы вверху ее была надпись «Закрыто», а в нижней части — надпись «Открыто».

Переделка нормально закрытого исполнительного устройства в нормально открытое сводится к тем же операциям, но шкальную пластинку устанавливают в положение, при котором в верхней ее части находится надпись «Открыто», а в нижней — надпись «Закрыто».

Переделка исполнительных устройств некоторых конструкций из нормально закрытых в нормально открытые или наоборот, вследствие неприспособленности затвора для этой цели, производится при наличии запасного затвора, имеющего соответственно расположенную присоединительную мембранную полость (рис. 5).

Затвор двухседельного регулирующего органа клапана

Рисунок 5. Полый затвор двухседельного регулирующего органа нормально закрытого исполнительного устройства

Ремонт корпусов и крышек исполнительных устройств.

Для выявления необходимости ремонта корпусов и крышек исполнительных устройств вначале их тщательно осматривают, особенно в участках резкого перехода сечений, около ребер и перехода корпуса к фланцу, а затем производят гидравлическое испытание корпуса и крышек на прочность.

Ремонт корпусов и крышек исполнительных устройств клапана

Испытание на прочность производят гидравлическим прессом при испытательном давлении Ри = 2,4 МПа (24 кгс/см2) для испольнительных устройств с Ру = 1,6 МПа (16 кгс/см2), Ри = 6 МПа (60 кгс/см2) для исполнительных устройств с Ру = 4 МПа (40 кгс/см2) и при испытатель­ном давлении Ри = 9,6 МПа (96 кгс/см2) для исполнитель­ных устройств с Ру = 6,4 МПа (64 кгс/см2). При испытании пресс целесообразно заполнять керосином или маслом, так как водяное заполнение пресса приводит к появлению ржавчины в дефектных местах. Выявленные трещины, сквозные и глубокие раковины в корпусах и крышках исправляются электродуговой сваркой. Места под сварку разделывают пневматическим или ручным режущим инструментом (зубилом, напильником, сверлом и т. п.). Выплавка дефектного места автогеном не рекомендуется во избежание ослабления прочности металла вследствие выгорания углерода при выплавке.

При ремонте чугунных корпусов и крышек применяют холодную сварку электродами марки ОЗЧ-4. Толщина покрытия должна быть 1,0 — 1,2 мм при диаметре стержня 3 мм, т. е. после покрытия диаметр электрода будет 5,0 — 5,4 мм; 1,25 — 1,40 мм — при диаметре стержня 4 мм и 1,5 — 1,7 мм — при диаметре стержня 5 мм. Отношение массы покрытия к массе стержня для электродов всех диаметров составляет примерно 35%.

Чугун, наплавленный таким электродом, поддается механической обработке твердосплавным режущим инструментом. Сварку производят участками. Каждый участок для снятия напряжений и уплотнения металла шва подвергают непосредственно после сварки ковке молотком вручную. Швы выполняют не менее чем в два прохода. Заварку трещин ведут обратноступенчатым способом.

Сварку осуществляют на постоянном токе при обратной полярности. Сварочный ток составляет примерно 25 — 30 A на 1 мм диаметра электрода. Сварку ведут короткими швами (примерно 30 мм) с охлаждением на воздухе до 60°С.

При ремонте корпусов определяют состояние резьбы в корпусе для ввертывания седел: проверяют чистоту обработки и плотность посадки седла. Резьба не должна иметь заусениц, выкрошенных ниток, вмятин и др., а также следов износа рабочим веществом. Резьба должна быть чистой, шлифованной и соответствовать 2-му классу точности. Плотность посадки резьбы проверяют при отвинчивании и завинчивании седел, которые должны отвинчиваться или завинчиваться с некоторым усилием (плотная посадка).

При ремонте корпусов определяют состояние резьбы под шпильки. Если резьба изношена и толщина стенки между шпильками достаточна, то нарезают новую резьбу несколько большего размера и изготовляют под этот размер шпильку. Если толщина стенки мала, то в отверстие под шпильку впрессовывают цилиндрик и, заварив его с двух сторон, высверливают в нем отверстие и нарезают резьбу под шпильку.

Вывертывание дефектных шпилек иногда представляет трудности, особенно это относится к шпилькам, часть которых отломана. В последнем случае в шпильке просверливают отверстие на глубину 10 — 15 мм и делают его квадратным, после чего вставляют квадратный стержень и ключом вывертывают шпильку из корпуса. Иногда приваривают к шпильке стержень и затем вывертывают ее.

Крышка исполнительного устройства клапана

Ремонт седел и затворов.

На износ рабочих поверхностей седел и затвора оказывают влияние два фактора: коррозия и эрозия.

Коррозия проявляется в разрушении поверхностей указанных деталей под действием протекающего вещества, химически взаимодействующего с материалами, из которых детали изготовлены. Степень разрушения можно уменьшить соответствующим подбором материалов, идущих на изготовление седел и затвора.

Эрозия проявляется в разрушении поверхностей седел и затвора вследствие истирающего воздействия рабочего вещества. Эрозия особенно проявляется в условиях, когда клапан открыт еще мало, так как при этом образуется узкий кольцевой проход между седлами и затвором и истирающее воздействие рабочего вещества возрастает. Эрозионный износ возникает и при неправильном выборе материала для изготовления седел и затвора или несоблюдении режимов их термической обработки.

В результате процессов коррозии и эрозии изменяется конфигурация седел и затвора исполнительного устройства, что нарушает характеристику последнего. Кроме того, появляется недопустимый пропуск протекающего вещества при полностью закрытом исполнительном устройстве. Односторонние разрушения рабочей поверхности седел приводят к искривлению штока и возрастанию трения затвора в опорных направляющих втулках, что вначале вызывает увеличение зоны нечувствительности, а затем — полное прекращение перемещений затвора.

Для восстановления изношенных уплотнительных поверхностей седел и затвора применяют наплавку легированными электродами, что сокращает расход дефицитных легированных сталей. Наплавку седел и затворов клапанов, работающих при высокой температуре протекающего вещества, целесообразно производить электродами, предназначенными для дуговой сварки высоколегированными сталями с особыми свойствами. Покрытие должно быть толстое или особо толстое.

Корпус исполнительного устройства клапана

Выпуск из ремонта исполнительных устройств.

Внешний осмотр перед испытаниями.

Цель: установить пригодность отремонтированного исполнительного устройства к дальнейшим испытаниям для выпуска из ремонта.

Требования: цвет окраски корпуса регулирующего органа и исполнительного механизма должен соответствовать применяемым для изготовления этих деталей материалам (корпуса из углеродистых сталей — серый цвет, из легированных кислотостойких и нержавеющих сталей — голубой цвет, из чугуна — черный цвет; мембранные исполнительные механизмы — оранжевый или черный цвет и т. п.); окраска корпуса регулирующего органа и исполнительного механизма не должна иметь дефектов, ухудшающих внешний вид клапана; у всех деталей, имеющих резьбу, последняя не должна иметь дефектных ниток, должна быть чистой, без заусениц; все винты, болты, гайки, шпильки и другие детали, входящие в комплект регулирующего органа, должны иметься в наличии.

Испытание регулирующих органов на герметичность в седлах и прокладках.

Испытание регулирующих органов на герметичность в седлах и прокладках производят гидравлическими прессами, заполненными керосином или маслом, имеющим вязкость не более 2° Е. При испытании регулирующего органа на герметичность в прокладках и сальнике керосин или масло подводят через отверстие выходного фланца, а отверстие входного фланца закрывают. Испытание ведут под давлением, равным условному давлению.

При испытании регулирующего органа на герметичность затвора в седлах керосин или масло подводят через отверстие входного фланца, а отверстие выходного фланца закрывают. В этом случае испытательное давление для всех типов регулирующих органов должно составлять 1 МПа (10 кгс/см2). С поверхности первого наплавленного валика молотком сбивают шлак и зачищают металлической щеткой, как сам валик, так и наплавляемую поверхность седла или затвора, прилегающую к валику. Недостаточно полное удаление шлака, брызг металла и т. п. затруднит Наложение второго валика и приведет к пористой и неровной его наплавке.

Повторяя операции пп. 3 и 4, наплавляют второй валик (второй слой). Общая высота наплавки составит 4 — 6 мм. Наплавку опять ведут в том же направлении, при этом начало шва перекрывают на длине 10 — 15 мм. Наплавку продолжают до получения нужной величины наплавленного слоя с припуском на механическую обработку не менее 3 мм на каждую сторону и 3 — 5 мм по высоте. На поверхности наплавленного слоя допускается некоторое количество мелких пор и раковин диаметром не более 1 мм при условии, что они будут удалены при последующей механической обработке.

Наплавленное седло или затвор подвергают термической обработке — отпуску при температуре’ 500 — 550°С с выдержкой при этой температуре в течение 2 ч с по­следующим медленным остыванием (вместе с нагревательной печью).

Наплавленный сплошной затвор устанавливают на токарный станок и обрабатывают под шаблон, вначале снимая лишний металл резцом, затем — личным бархатным напильником, тонкой стеклянной бумагой, и полируют полировочной пастой.

Окончательную расточку наплавленных седел производят совместно с корпусом на токарном станке. Для этого седла завинчивают в корпус клапана с захлесткой в резьбе и до получения герметичности плоских уплотнительных поверхностей (возле резьбы).

При изготовлении нового седла или обработке наплав» ленного седла на токарном станке допускается эксцентриситет пропускного (посадочного) отверстия и резьбовой окружности седла не более 0,02 мм на 100 мм длины диаметра.

Для выверки конфигурации седел нужны два шаблона — шаблон профиля верхнего седла и шаблон профиля нижнего седла. Изготовление этих шаблонов не представляет сложности, так как по существу у седла важно лишь выдержать профиль посадочной поверхности, ее месторасположение и диаметр прохода. Вид профиля входной части седла особого значения не имеет. При испытании нормально открытых исполнительных устройств для их закрытия в мембранную полость подается воздух под предельным давлением срабатывания, а нормально закрытые исполнительные устройства должны закрываться нормальным установочным натяжением пружины.

Регулирующие исполнительные устройства, предназначенные для работы в газовых средах (пар, воздух, газы), подвергают дополнительному испытанию на герметичность в сальнике и прокладках давлением воздуха, подаваемого со стороны выходного фланца, 1,3 МПа (13 кгс/см2) — для чугунных регулирующих органов, 2,2 МПа (22 кгс/см2) — для стальных регулирующих органов на Ру = 4,0 МПа (40 кгс/см2) и 3,4 МПа (34 кгс/см2) — для стальных регулирующих органов на Ру = 6,4 МПа (64 кгс/см2).

Требования:

пропуск керосина или масла через уплотнительные прокладки или сальник при испытании герметичности не допускается;

количество керосина или масла, прошедшее в минуту через уплотнительные поверхности седел, в зависимости от условного диаметра регулирующего органа не должно превышать следующих значений:

Диаметр регулирующего органа Dy, мм

15 — 25

50 — 80 100 — 125 150 200

250 — 300

Количество керосина или масла, см3

10

20 30 40 50

75

Утечка воздуха через прокладки и сальниковую набивку при испытании давлением воздуха не допускается.

Проверка качества сборки исполнительного устройства.

Проверку качества сборки исполнительного устройства выполняют на установке, представленной на рис. 6.

Проверка качества сборки исполнительного устройства

Рисунок 6.

К штоку испытуемого исполнительного устройства 2 прикрепляют пластинку /, которая при перемещении затвора воздействует на изогнутый конец стрелки 7, имеющей осевое крепление в точке 8. Ось 8 стрелки укрепляется на неподвижной доске, временно прикрепленной к верхней крышке корпуса исполнительного устройства. Отношение длины плеч стрелки берут примерно 15:1 в целях увеличения длины шкалы 6. Шкалу предварительно градуируют в процентах хода штока исполнительного устройства, т. е. размечают на сто равных частей.

В мембранную полость через фильтр 5 и панель дистанционного управления 4 по трубке 3 подают сжатый воздух, давление которого измеряют образцовым манометром (давление сжатого воздуха перед редуктором должно составлять 150 — 200 кПа). Изменяя натяжение регулировочной пружины, добиваются полного хода затвора при изменении давления воздуха в мембранной полости в рабочих пределах.

Выбор промышленной сети для автоматизации технологических процессов

В настоящий момент времени понятие «современное полевое оборудование» означает непременно «интеллектуальное оборудование», то есть оборудование (контрольно-измерительные приборы и исполнительные устройства), снабженное вычислительными мощностями и средствами цифровой коммуникации. Аналоговые приборы, то есть приборы, формирующие на выходе только стандартный аналоговый сигнал (чаще всего, 4 — 20 мА) стремительно исчезают из производственных программ ведущих фирм — производителей и, соответственно, с рынка полевого оборудования. Аналогичным образом, аналоговое исполнительное устройство — это устройство, воспринимающее стандартный аналоговый сигнал для формирования управляющего воздействия на технологический процесс в виде изменения расхода вещества или энергии. И здесь процесс замены аналоговых исполнительных устройств на интеллектуальные (то есть на устройства с интеллектуальными позиционерами) идет довольно интенсивно.

Вот три основные причины устранения аналоговых устройств с рынка полевого оборудования:

— неудовлетворительные технические характеристики (метрологические, надежностные, динамические и пр.);

— недостаточная информативность;

— стремительное развитие микропроцессорной техники, которое привело к созданию высокоэффективных, надежных и, вместе с тем, дешевых микропроцессоров и различных специализированных микросхем для применения в конструкциях полевого оборудования.

Понятие «недостаточная информативность» означает, что с точки зрения современных требований к качеству управления аналоговый сигнал несёт слишком мало информации. Отсутствует информация, подтверждающая достоверность результата измерения, то есть информация, подтверждающая исправность средства измерения. Отсутствует информация о самом средстве измерения (его тип, позиция, настройки). Достаточно представить себе ситуацию, когда в кроссовом помещении перепутали провода, идущие от разных датчиков; чтобы исправить положение необходимо провести сложную и утомительную процедуру «прозвонки» проводов. Кроме того аналоговый сигнал исключает саму возможность обратного воздействия на средство измерения с целью, например изменения его настроек. К перечисленным негативным факторам добавим свойственную аналоговым сигналам низкую помехоустойчивость.

Результатом развития методов и средств цифровой коммуникации явился HART — протокол. Принцип HART — коммуникации: цифровой высокочастотный сигнал накладывается на аналоговый сигнал стандартного диапазона 4-20 мА. Цифровой сигнал накладывается на аналоговый сигнал, не деформируя его. Цифровой сигнал основан на двоичном коде: нуль (0) реализуется посредством частоты 2200 Гц, а единица (1) посредством частоты 1200 Гц. HART — коммуникация осуществляется на основе стандартизованного протокола (HART — протокола). Посредством HART — коммуникации передаётся в обоих направлениях большое количество информации. От полевого оборудования в систему передаются: данные о параметрах технологического процесса, конфигурация полевого оборудования, его состояние и диагностические данные. От системы к полевому оборудованию передаются запросы на предоставление информации, команды на изменение настроек и пр. Коммуникация с полевым оборудованием может осуществляться либо через персональный компьютер (например, с рабочего места оператора), либо посредством HART-коммуникатора, подключённого к любому удобному месту контура 4- 20 мА. В настоящее время все контрольно — измерительное оборудование ведущих фирм имеет HART-исполнения. По оценке экспертов, количество производителей HART-совместимых продуктов превысило сотню.

Таким образом, HART — прибор — это прибор, снабжённый техническими средствами для обеспечения HART — коммуникации. Очень важным является то обстоятельство, что HART — протокол является универсальным и стандартизованным. Реализация HART — коммуникации в конкретном приборе любой фирмы-производителя соответствует стандартному протоколу, а также форматам описаний устройств и языку их обработки. Поэтому посредством HART — коммуникатора или программного обеспечения одной фирмы можно осуществлять цифровую коммуникацию с HART — приборами других фирм. Основные преимущества при использовании HART — устройств достигаются за счёт следующих факторов:

— высокая помехоустойчивость, свойственная вообще цифровой коммуникации;

— возможность дистанционной калибровки, конфигурирования и проверки состояния прибора,

— экономия кабеля для многопараметрических датчиков;

— повышение достоверности результата измерения (цифровой сигнал дублирует аналоговый сигнал);

— наличие «собственной» базы данных в каждом интеллектуальном приборе;

— возможность подключения к системе полевого оборудования разных производителей.

Освоение цифровых технологий открыло, в свою очередь, путь к появлению и развитию сетевых технологий. Сетевая технология — это раздел информационной технологии, основной характеристикой которого является объединение различных устройств общей линией («шиной»). Все устройства, объединенные этой шиной, образуют сеть, они передают в нее и получают из нее информацию. Вот три основные предпосылки, которые побуждают разработчиков систем АСУ применять сетевые технологии:

— высокая (и все возрастающая) стоимость кабельной продукции;

— высокая стоимость работ по монтажу, пусконаладке и эксплуатации централизованных систем, то есть систем с параллельным способом передачи информации от полевых устройств в систему;

— растущая потребность в распределении вычислительных мощностей между элементами системы и, в том числе, между полевыми устройствами.

Суть сетевой технологии применительно к полевому оборудованию заключается в подключении большого количества полевых устройств к одной линии, называемой полевой шиной. Действительно, вместо того, чтобы «тянуть» линию от каждого прибора, достаточно объединить все датчики, контроллеры и исполнительные устройства одной линией — шиной. К одному сегменту шины можно подключать полевое оборудование различного назначения. За счёт применения сетевой технологии достигаются высочайшие преимущества в плане передачи, обработки и хранения информации и экономии кабельной продукции. Все сетевые системы, связывающие полевые устройства с устройствами верхнего уровня, объединены понятием Fieldbus (буквально — полевая шина). Наиболее распространённые варианты (протоколы) промышленных сетей (применительно опять-таки к полевому оборудованию) — это FOUNDATION FIELDBUS, и PROFIBUS-PA .

Оба протокола различаются по нескольким важным моментам. Например, в FIELDBUS FOUNDATION обеспечивается циклическая связь между полевыми устройствами, что позволяет реализовать децентрализованные контуры управления и вычисления; предусмотрены также независимые аварийные сигналы от полевых устройств. В PROFIBUS процедура обмена между управляющими и подчиненными устройствами всегда требует циклического или ациклического вызова со стороны управляющего устройства; независимое воздействие (сигнал) подчинённого устройства или обмен данными между двумя подчинёнными устройствами невозможен без участия управляющего устройства.

Таким образом, прибор, поддерживающий FOUNDATION FIELDBUS или PROFIBUS-PA или какой-либо иной протокол, — это прибор, снабжённый техническими средствами для функционирования по данному протоколу. Выбор сетевого протокола для полевого оборудования (контрольно-измерительных приборов и исполнительных устройств) определяется требованиями системы управления.

Попробуем теперь сравнить три системы полевого оборудования: аналоговую, HART и сетевую (FIELDBUS). Образно говоря, аналоговая система — это наше вчера, система HART — это наше сегодня, сетевая система — это наше завтра. По сравнению с аналоговым вариантом вариант HART обеспечивает несравненно больший объем информации и дополнительные очень важные и полезные функции (помехоустойчивая двусторонняя связь между полевым оборудованием и контроллером, дистанционная проверка исправности оборудования, дистанционное изменение настроек, диагностика, сигнализация неисправностей элементов оборудования и пр.).

По сравнению с HART — вариантом сетевой вариант обеспечивает пользователю те же самые возможности, но при этом предоставляет существенные дополнительные преимущества:

— часть функций управления передаётся на уровень полевого оборудования.

— существенно расширяются возможности по передаче, обмену и хранению информации.

— достигается существенная экономия кабельной продукции и сопутствующих затрат на прокладку и обслуживание кабелей.

Однако эти преимущества могут быть реализованы только в том случае, если распределённая система управления поддерживает данный сетевой протокол. То есть выбор варианта здесь исходит от системы!

Разработчики и производители полевого оборудования активно готовятся к применению приборов в сетевых системах. В состав производственных программ включаются исполнения приборов, поддерживающие сетевые протоколы. Выполнение конструкции по блочно — модульному принципу позволяет реализовывать различные исполнения посредством сменных модулей.

Пользователь, выбирая полевое оборудование, выполненное по блочно — модульному принципу, в определённой степени страхует себя от возможных изменений в будущем. Например, заменой соответствующего модуля можно переделать HART -прибор в прибор, поддерживающий протокол FOUNDATION Fieldbus.

Аналогичным образом, выбирая программное обеспечение для интеллектуального полевого оборудования, следует остановить выбор на универсальном продукте, поддерживающем несколько основных коммуникационных протоколов.